Spatio-temporal modelling of the status of groundwater droughts

被引:55
|
作者
Marchant, B. P. [1 ]
Bloomfield, J. P. [2 ]
机构
[1] British Geol Survey, Keyworth NG12 5GG, Notts, England
[2] British Geol Survey, Wallingford OX10 8BB, Oxon, England
基金
英国自然环境研究理事会;
关键词
Groundwater drought; Standardised Groundwater level Index (SGI); Spatio-temporal variability of groundwater levels; Impulse response function; Mixed model; Kriging; STANDARDIZED PRECIPITATION INDEX; AQUIFER; CHALK; UNCERTAINTY; PROPAGATION; VARIABILITY; SERIES;
D O I
10.1016/j.jhydrol.2018.07.009
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
An empirical (geo)statistical modelling scheme is developed to address the challenges of modelling the severity and distribution of groundwater droughts given their spatially and temporally heterogeneous nature and given typically highly irregular groundwater level observations in space and time. The scheme is tested using GWL measurements from 948 observation boreholes across the Chalk aquifer (UK) to estimate monthly groundwater drought status from 1960 to 2013. For each borehole, monthly GWLs are simulated using empirical mixed models where the fixed effects are based on applying an impulse response function to the local monthly precipitation. Modelled GWLs are standardised using the Standardised Groundwater Index (SGI) and the monthly SGI values interpolated across the aquifer to produce spatially distributed monthly maps of SGI drought status for 54 years for the Chalk. The mixed models include fewer parameters than comparable lumped parameter groundwater models while explaining a similar proportion (more than 65%) of GWL variation. In addition, the empirical modelling approach enables confidence bounds on the predicted GWLs and SGI values to be estimated without the need for prior information about catchment or aquifer parameters. The results of the modelling scheme are illustrated for three major episodes of multi-annual drought (1975-1976; 1988-1992; 2011-2012). They agree with previous documented analyses of the groundwater droughts while providing for the first time a systematic, spatially coherent characterisation of the events. The scheme is amenable to use in near real time to provide short term forecasts of groundwater drought status if suitable forecasts of the driving meteorology are available.
引用
收藏
页码:397 / 413
页数:17
相关论文
共 50 条
  • [31] Spatio-temporal hydrological modelling in a GIS environment
    Dayawansa, NDK
    De Silva, RP
    Taylor, JC
    REMOTE SENSING AND HYDROLOGY 2000, 2001, (267): : 433 - 438
  • [32] Spatio-temporal precipitation modelling in rural watersheds
    Dalezios, Nicolas R.
    Adamowski, Kazimierz
    Hydrological Sciences Journal, 1995, 40 (05):
  • [33] Spatio-temporal stochastic modelling of Clostridium difficile
    Starr, J. M.
    Campbell, A.
    Renshaw, E.
    Poxton, I. R.
    Gibson, G. J.
    JOURNAL OF HOSPITAL INFECTION, 2009, 71 (01) : 49 - 56
  • [34] Spatio-temporal hydrological modelling in a GIS environment
    Dayawansa, N.D.K.
    De Silva, R.P.
    Taylor, J.C.
    IAHS-AISH Publication, 2000, (267): : 433 - 438
  • [35] Recent advances in spatio-temporal stochastic modelling
    Gonzalez-Manteiga, Wenceslao
    Crujeiras, Rosa M.
    ENVIRONMETRICS, 2012, 23 (01) : 1 - 2
  • [36] Spatio-temporal modelling -: with a view to biological growth
    Jensen, Eva B. Vedel
    Jonsdottir, Kristjana Yr
    Schmiegel, Jurgen
    Barndorff-Nielsen, Ole E.
    STATISTICAL METHODS FOR SPATIO-TEMPORAL SYSTEMS, 2007, 107 : 47 - 75
  • [37] Modelling spatio-temporal dynamics of interictal spikes
    Lemarechal, J-D
    Triebkorn, P.
    Duma, G-M
    Dollomaja, B.
    Badier, J-M
    Benar, C-G
    Bartolomei, F.
    Wang, H.
    Jirsa, V.
    EPILEPSIA, 2023, 64 : 249 - 249
  • [38] Modelling spatio-temporal interactions within the cell
    Rangamani, Padmini
    Iyengar, Ravi
    JOURNAL OF BIOSCIENCES, 2007, 32 (01) : 157 - 167
  • [39] Spatio-temporal modelling of disease mapping of rates
    Torabi, Mahmoud
    Rosychuk, Rhonda J.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (04): : 698 - 715
  • [40] Modelling underreported spatio-temporal crime events
    Riascos Villegas, Alvaro J.
    Nungo, Jose Sebastian
    Gomez Tobon, Lucas
    Dulce Rubio, Mateo
    Gomez, Francisco
    PLOS ONE, 2023, 18 (07):