Spatio-temporal modelling of the status of groundwater droughts

被引:55
|
作者
Marchant, B. P. [1 ]
Bloomfield, J. P. [2 ]
机构
[1] British Geol Survey, Keyworth NG12 5GG, Notts, England
[2] British Geol Survey, Wallingford OX10 8BB, Oxon, England
基金
英国自然环境研究理事会;
关键词
Groundwater drought; Standardised Groundwater level Index (SGI); Spatio-temporal variability of groundwater levels; Impulse response function; Mixed model; Kriging; STANDARDIZED PRECIPITATION INDEX; AQUIFER; CHALK; UNCERTAINTY; PROPAGATION; VARIABILITY; SERIES;
D O I
10.1016/j.jhydrol.2018.07.009
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
An empirical (geo)statistical modelling scheme is developed to address the challenges of modelling the severity and distribution of groundwater droughts given their spatially and temporally heterogeneous nature and given typically highly irregular groundwater level observations in space and time. The scheme is tested using GWL measurements from 948 observation boreholes across the Chalk aquifer (UK) to estimate monthly groundwater drought status from 1960 to 2013. For each borehole, monthly GWLs are simulated using empirical mixed models where the fixed effects are based on applying an impulse response function to the local monthly precipitation. Modelled GWLs are standardised using the Standardised Groundwater Index (SGI) and the monthly SGI values interpolated across the aquifer to produce spatially distributed monthly maps of SGI drought status for 54 years for the Chalk. The mixed models include fewer parameters than comparable lumped parameter groundwater models while explaining a similar proportion (more than 65%) of GWL variation. In addition, the empirical modelling approach enables confidence bounds on the predicted GWLs and SGI values to be estimated without the need for prior information about catchment or aquifer parameters. The results of the modelling scheme are illustrated for three major episodes of multi-annual drought (1975-1976; 1988-1992; 2011-2012). They agree with previous documented analyses of the groundwater droughts while providing for the first time a systematic, spatially coherent characterisation of the events. The scheme is amenable to use in near real time to provide short term forecasts of groundwater drought status if suitable forecasts of the driving meteorology are available.
引用
收藏
页码:397 / 413
页数:17
相关论文
共 50 条
  • [21] Spatio-temporal patterns of the interaction between groundwater and surface water in plains
    Ochoa, Cristian Guevara
    Sierra, Agustin Medina
    Vives, Luis
    Zimmermann, Erik
    Bailey, Ryan
    HYDROLOGICAL PROCESSES, 2020, 34 (06) : 1371 - 1392
  • [22] Spatio-temporal monitoring and modelling of birch pollen levels in Belgium
    Verstraeten, Willem W.
    Dujardin, Sebastien
    Hoebeke, Lucie
    Bruffaerts, Nicolas
    Kouznetsov, Rostislav
    Dendoncker, Nicolas
    Hamdi, Rafiq
    Linard, Catherine
    Hendrickx, Marijke
    Sofiev, Mikhail
    Delcloo, Andy W.
    AEROBIOLOGIA, 2019, 35 (04) : 703 - 717
  • [23] Spatio-temporal ecological niche modelling of multigenerational insect migrations
    Menchetti, Mattia
    Gueguen, Maya
    Talavera, Gerard
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 286 (1910)
  • [24] Modelling spatio-temporal soil moisture dynamics in mountain tundra
    Tyystjarvi, Vilna
    Kemppinen, Julia
    Luoto, Miska
    Aalto, Tuula
    Markkanen, Tiina
    Launiainen, Samuli
    Kieloaho, Antti-Jussi
    Aalto, Juha
    HYDROLOGICAL PROCESSES, 2022, 36 (01)
  • [25] Socio-ecological determinants on spatio-temporal changes of groundwater in the Yellow River Basin, China
    Lin, Mi
    Biswas, Asim
    Bennett, Elena M.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 731
  • [26] Improved prediction for a spatio-temporal model
    Nowak, Gen
    Welsh, A. H.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2020, 27 (04) : 631 - 648
  • [27] Spatio-temporal characterisation of droughts using selected indices in Upper Tana River watershed, Kenya
    Okal, Harriette A.
    Ngetich, Felix K.
    Okeyo, Jeremiah M.
    SCIENTIFIC AFRICAN, 2020, 7
  • [28] Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires
    Dabrowski, Joel Janek
    Pagendam, Daniel Edward
    Hilton, James
    Sanderson, Conrad
    MacKinlay, Daniel
    Huston, Carolyn
    Bolt, Andrew
    Kuhnert, Petra
    SPATIAL STATISTICS, 2023, 55
  • [29] Spatio-temporal variability of droughts over the Mullaitivu District in Sri Lanka from 1980 to 2020
    Nagamuthu, Piratheeparajah
    Tan, Mou Leong
    Chan, Ngai Weng
    Zhang, Fei
    GEOGRAFIA-MALAYSIAN JOURNAL OF SOCIETY & SPACE, 2022, 18 (01): : 15 - 31
  • [30] Spatio-Temporal Analysis of Droughts in Semi-Arid Regions by Using Meteorological Drought Indices
    Shahabfar, Alireza
    Eitzinger, Josef
    ATMOSPHERE, 2013, 4 (02) : 94 - 112