Performance assessment of a passive core cooling design for cylindrical lithium-ion batteries

被引:35
作者
Zhao, Rui [1 ,2 ]
Gu, Junjie [2 ]
Liu, Jie [1 ,2 ]
机构
[1] Chongqing Technol & Business Univ, Natl Res Base Intelligent Mfg Serv, Chongqing 400067, Peoples R China
[2] Carleton Univ, Dept Mech & Aerosp Engn, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
core cooling; lightweight; lithium-ion battery; phase change material; thermal management system; PHASE-CHANGE MATERIALS; THERMAL MANAGEMENT-SYSTEM; HYBRID ELECTRIC VEHICLES; HEAT PIPES; PACK; OPTIMIZATION; TEMPERATURE; GRAPHITE; CELLS;
D O I
10.1002/er.4061
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Battery thermal management (BTM) system is an indispensable component for large-sized lithium-ion battery packs used in aerospace and automotive applications. Besides providing a proper temperature range for batteries to operate, thus improving their efficiency, lifespan, and safety, the BTM system also needs to be well designed with considering the cost, weight, and practicability. In this paper, an internal passive BTM system is proposed for the cylindrical Li-ion batteries. The design embeds a phase change material (PCM) filled mandrel inside the battery to achieve the cooling effect. A thermal test cell is first fabricated and tested in a wind tunnel under different cooling scenarios, and it is also used to verify a numerical thermal model. The proposed BTM system is further examined through the model and found to be able to create a preferable environment for batteries to operate. Specifically, the core BTM system consumes less PCM and achieves lower temperature rises and more uniform temperature distributions than an external BTM system. The proposed design can also exert its full latent heat to manage the heat generated from the battery without having a thermally conductive matrix, which is usually composite with PCM in external BTM systems. In addition, experiments show that the battery equipped with the proposed BTM system is ready for intensive cycling tests.
引用
收藏
页码:2728 / 2740
页数:13
相关论文
共 37 条
[1]  
Al Hallaj S, 2000, J ELECTROCHEM SOC, V147, P3231, DOI 10.1149/1.1393888
[2]   Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams [J].
Alipanah, Morteza ;
Li, Xianglin .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 102 :1159-1168
[3]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[4]   Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries [J].
Goli, Pradyumna ;
Legedza, Stanislav ;
Dhar, Aditya ;
Salgado, Ruben ;
Renteria, Jacqueline ;
Balandin, Alexander A. .
JOURNAL OF POWER SOURCES, 2014, 248 :37-43
[5]   A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes [J].
Greco, Angelo ;
Cao, Dongpu ;
Jiang, Xi ;
Yang, Hong .
JOURNAL OF POWER SOURCES, 2014, 257 :344-355
[6]   Thermal model of cylindrical and prismatic lithium-ion cells [J].
Hatchard, TD ;
MacNeil, DD ;
Basu, A ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) :A755-A761
[7]   Mathematical modelling of solidification and melting: A review [J].
Hu, H ;
Argyropoulos, SA .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1996, 4 (04) :371-396
[8]   Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials [J].
Hussain, Abid ;
Abidi, Irfan H. ;
Tso, C. Y. ;
Chan, K. C. ;
Luo, Zhengtang ;
Chao, Christopher Y. H. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2018, 124 :23-35
[9]   Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles [J].
Javani, N. ;
Dincer, I. ;
Naterer, G. F. ;
Yilbas, B. S. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 72 :690-703
[10]   Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material [J].
Jiang, Guiwen ;
Huang, Juhua ;
Liu, Mingchun ;
Cao, Ming .
APPLIED THERMAL ENGINEERING, 2017, 120 :1-9