Genome-wide identification of WRKY gene family and expression analysis under abiotic stresses in Andrographis paniculata

被引:4
|
作者
Wang, Qichao [1 ]
Zeng, Wujing [1 ]
Ali, Basharat [2 ]
Zhang, Xuemin [3 ]
Xu, Ling [1 ]
Liang, Zongsuo [1 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Life Sci & Med, Zhejiang Prov Key Lab Plant Secondary Metab & Reg, Hangzhou 310018, Peoples R China
[2] Univ Agr Faisalabad, Dept Agron, Faisalabad 38040, Pakistan
[3] Tianjin Tasly Modern TCM Resources Co Ltd, Tianjin 300410, Peoples R China
关键词
A; paniculata; ApWRKY; Secondary metabolites; Diterpene lactones; Andrographolide; Abiotic stress; PROTEIN;
D O I
10.32604/biocell.2021.015282
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Andrographis paniculata (A. paniculata) is a Chinese herbal medicine that clears away heat, reduces inflammation, protects the liver, and promotes choleretics. The WRKYs of A. paniculata are still not well characterized, although many WRKYs have been identified in various plant species. In the present study, 59 A. paniculata WRKY (ApWRKY) genes were identified and renamed on the basis of their respective chromosome distribution. These ApWRKYs were divided into three groups via phylogenetic analysis according to their WRKY domains and combined with WRKY of Arabidopsis. The 59 identified ApWRKY transcription factors were non-uniformity distributed on 23 chromosomes of A. paniculata. From the structural analysis of the conserved motifs, different ApWRKYs structures showed different biological functions, and the ApWRKY transcription factor had certain species-specificity in the evolutionary process. The expression patterns of the 41 ApWRKYs were examined through quantitative real-time PCR (qRT-PCR) in various tissues and under abiotic stresses (salt). The results showed that most of the ApWRKY had different reactions to salt treatment. In addition, the content of the four main secondary metabolites in A. paniculata leaves was determined under salt stress. The results show that under a low concentration of salt treatment, the synthesis of andrographolide can be improved.
引用
收藏
页码:1107 / 1119
页数:13
相关论文
共 50 条
  • [31] Genome-Wide Identification and Expression Analysis of the Cucumber FKBP Gene Family in Response to Abiotic and Biotic Stresses
    Yang, Dekun
    Li, Yahui
    Zhu, Mengdi
    Cui, Rongjing
    Gao, Jiong
    Shu, Yingjie
    Lu, Xiaomin
    Zhang, Huijun
    Zhang, Kaijing
    GENES, 2023, 14 (11)
  • [32] Genome-Wide Identification and Expression Analysis of Eggplant DIR Gene Family in Response to Biotic and Abiotic Stresses
    Zhang, Kaijing
    Xing, Wujun
    Sheng, Suao
    Yang, Dekun
    Zhen, Fengxian
    Jiang, Haikun
    Yan, Congsheng
    Jia, Li
    HORTICULTURAE, 2022, 8 (08)
  • [33] Genome-Wide Identification and Characterization of Soybean GmLOR Gene Family and Expression Analysis in Response to Abiotic Stresses
    Fang, Yisheng
    Cao, Dong
    Yang, Hongli
    Guo, Wei
    Ouyang, Wenqi
    Chen, Haifeng
    Shan, Zhihui
    Yang, Zhonglu
    Chen, Shuilian
    Li, Xia
    Chen, Limiao
    Zhou, Xinan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (22)
  • [34] Genome-Wide Identification and Expression Analysis of Hexokinase Gene Family Under Abiotic Stress in Tomato
    Li, Jing
    Yao, Xiong
    Zhang, Jianling
    Li, Maoyu
    Xie, Qiaoli
    Yang, Yingwu
    Chen, Guoping
    Zhang, Xianwei
    Hu, Zongli
    PLANTS-BASEL, 2025, 14 (03):
  • [35] Genome-wide identification of the WRKY gene family in Camellia oleifera and expression analysis under phosphorus deficiency
    Su, Wenjuan
    Zhou, Zengliang
    Zeng, Jin
    Cao, Ruilan
    Zhang, Yunyu
    Hu, Dongnan
    Liu, Juan
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [36] Genome-wide identification and expression analysis of the GRAS gene family under abiotic stresses in wheat (Triticum aestivum L.)
    Mishra, Shefali
    Chaudhary, Reeti
    Pandey, Bharti
    Singh, Gyanendra
    Sharma, Pradeep
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [37] GENOME-WIDE IDENTIFICATION AND EXPRESSION ANALYSIS OF TLPS GENE FAMILY UNDER ABIOTIC STRESSES IN CAMELINA SATIVA USING BIOINFORMATICS METHODS
    Liu, Y. X.
    Liu, X.
    Wu, B. X.
    Pan, Y. J.
    Wu, L. K.
    Li, Y. Y.
    Wang, Z.
    Pang, H. B.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2024, 22 (01): : 249 - 263
  • [38] Genome-Wide Identification of Hsp90 Gene Family in Perennial Ryegrass and Expression Analysis under Various Abiotic Stresses
    Appiah, Charlotte
    Yang, Zhong-Fu
    He, Jie
    Wang, Yang
    Zhou, Jie
    Xu, Wen-Zhi
    Nie, Gang
    Zhu, Yong-Qun
    PLANTS-BASEL, 2021, 10 (11):
  • [39] Genome-wide identification and expression analysis of PIN gene family under phytohormone and abiotic stresses in Vitis Vinifera L.
    Gou, Huimin
    Nai, Guojie
    Lu, Shixiong
    Ma, Weifeng
    Chen, Baihong
    Mao, Juan
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2022, 28 (10) : 1905 - 1919
  • [40] Genome-Wide Identification of the RALF Gene Family and Expression Pattern Analysis in Zea mays (L.) under Abiotic Stresses
    Xue, Baoping
    Liang, Zicong
    Liu, Yue
    Li, Dongyang
    Liu, Chang
    PLANTS-BASEL, 2024, 13 (20):