FAST APPROXIMATE SIMULATION OF FINITE LONG-RANGE SPIN SYSTEMS

被引:1
作者
McVinish, Ross [1 ]
Hodgkinson, Liam [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld, Australia
基金
澳大利亚研究理事会;
关键词
Tau-leaping; simulation; spin system; error analysis; rate of convergence; mean-field models; MULTILEVEL MONTE-CARLO; STOCHASTIC SIMULATION; ERROR ANALYSIS; BEHAVIOR; MODELS; TOPICS;
D O I
10.1214/20-AAP1624
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Tau leaping is a popular method for performing fast approximate simulation of certain continuous time Markov chain models typically found in chemistry and biochemistry. This method is known to perform well when the transition rates satisfy some form of scaling behaviour. In a similar spirit to tau leaping, we propose a new method for approximate simulation of spin systems which approximates the evolution of spin at each site between sampling epochs as an independent two-state Markov chain. When combined with fast summation methods, our method offers considerable improvement in speed over the standard Doob-Gillespie algorithm. We provide a detailed analysis of the error incurred for both the number of sites incorrectly labelled and for linear functions of the state.
引用
收藏
页码:1443 / 1473
页数:31
相关论文
共 41 条
[1]   Extinction dynamics in mainland-island metapopulations:: An N-patch Stochastic model [J].
Alonso, D ;
McKane, A .
BULLETIN OF MATHEMATICAL BIOLOGY, 2002, 64 (05) :913-958
[2]   COMPLEXITY OF MULTILEVEL MONTE CARLO TAU-LEAPING [J].
Anderson, David F. ;
Higham, Desmond J. ;
Sun, Yu .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) :3106-3127
[3]   WEAK ERROR ANALYSIS OF NUMERICAL METHODS FOR STOCHASTIC MODELS OF POPULATION PROCESSES [J].
Anderson, David F. ;
Koyama, Masanori .
MULTISCALE MODELING & SIMULATION, 2012, 10 (04) :1493-1524
[4]   MULTILEVEL MONTE CARLO FOR CONTINUOUS TIME MARKOV CHAINS, WITH APPLICATIONS IN BIOCHEMICAL KINETICS [J].
Anderson, David F. ;
Higham, Desmond J. .
MULTISCALE MODELING & SIMULATION, 2012, 10 (01) :146-179
[5]   ERROR ANALYSIS OF TAU-LEAP SIMULATION METHODS [J].
Anderson, David F. ;
Ganguly, Arnab ;
Kurtz, Thomas G. .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (06) :2226-2262
[6]  
Anderson DF, 2011, COMMUN MATH SCI, V9, P301
[7]   Connecting deterministic and stochastic metapopulation models [J].
Barbour, A. D. ;
McVinish, R. ;
Pollett, P. K. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 71 (6-7) :1481-1504
[8]   Individual and patch behaviour in structured metapopulation models [J].
Barbour, A. D. ;
Luczak, M. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 71 (03) :713-733
[9]   A HIERARCHICAL O(N-LOG-N) FORCE-CALCULATION ALGORITHM [J].
BARNES, J ;
HUT, P .
NATURE, 1986, 324 (6096) :446-449
[10]   Stochastic linear multistep methods for the simulation of chemical kinetics [J].
Barrio, Manuel ;
Burrage, Kevin ;
Burrage, Pamela .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (06)