A Bias Trick for Centered Robust Principal Component Analysis (Student Abstract)
被引:0
作者:
He, Baokun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Dallas, 800 W Campbell Rd, Richardson, TX 75083 USAUniv Texas Dallas, 800 W Campbell Rd, Richardson, TX 75083 USA
He, Baokun
[1
]
Wan, Guihong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Dallas, 800 W Campbell Rd, Richardson, TX 75083 USAUniv Texas Dallas, 800 W Campbell Rd, Richardson, TX 75083 USA
Wan, Guihong
[1
]
Schweitzer, Haim
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Dallas, 800 W Campbell Rd, Richardson, TX 75083 USAUniv Texas Dallas, 800 W Campbell Rd, Richardson, TX 75083 USA
Schweitzer, Haim
[1
]
机构:
[1] Univ Texas Dallas, 800 W Campbell Rd, Richardson, TX 75083 USA
来源:
THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE
|
2020年
/
34卷
关键词:
PCA;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Outlier based Robust Principal Component Analysis (RPCA) requires centering of the non-outliers. We show a "bias trick" that automatically centers these non-outliers. Using this bias trick we obtain the first RPCA algorithm that is optimal with respect to centering.
引用
收藏
页码:13807 / 13808
页数:2
相关论文
共 6 条
[1]
[Anonymous], 2012, NIPS, DOI DOI 10.1109/TIT.2011.2173156