A Bias Trick for Centered Robust Principal Component Analysis (Student Abstract)

被引:0
作者
He, Baokun [1 ]
Wan, Guihong [1 ]
Schweitzer, Haim [1 ]
机构
[1] Univ Texas Dallas, 800 W Campbell Rd, Richardson, TX 75083 USA
来源
THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2020年 / 34卷
关键词
PCA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Outlier based Robust Principal Component Analysis (RPCA) requires centering of the non-outliers. We show a "bias trick" that automatically centers these non-outliers. Using this bias trick we obtain the first RPCA algorithm that is optimal with respect to centering.
引用
收藏
页码:13807 / 13808
页数:2
相关论文
共 6 条
  • [1] [Anonymous], 2012, NIPS, DOI DOI 10.1109/TIT.2011.2173156
  • [2] He B., 2019, ARXIV191108024
  • [3] Robust PCA and classification in biosciences
    Hubert, M
    Engelen, S
    [J]. BIOINFORMATICS, 2004, 20 (11) : 1728 - 1736
  • [4] Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis
    Rahmani, Mostafa
    Atia, George K.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (23) : 6260 - 6275
  • [5] Outlier-Robust PCA: The High-Dimensional Case
    Xu, Huan
    Caramanis, Constantine
    Mannor, Shie
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (01) : 546 - 572
  • [6] Zhang HY, 2015, AAAI CONF ARTIF INTE, P3143