Variational multiscale modeling of Langmuir turbulent boundary layers in shallow water using Isogeometric Analysis (Reprinted from vol 108, 103570, 2020)

被引:0
作者
Zhu, Qiming [1 ]
Yan, Jinhui [1 ]
Tejada-Martinez, Andres E. [2 ]
Bazilevs, Yuri [3 ]
机构
[1] Univ Illinois, Dept Civil & Environm Engn, Champaign, IL USA
[2] Univ S Florida, Dept Civil & Environm Engn, Tampa, FL 33620 USA
[3] Brown Univ, Sch Engn, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Langmuir turbulence; LES; IGA; RBVMS; FLUID-STRUCTURE INTERACTION; FINITE-ELEMENT FORMULATION; LARGE-EDDY SIMULATION; SPACE-TIME; FLOWS; ALGORITHM; DYNAMICS; GMRES; NURBS; WIND;
D O I
10.1016/j.mechrescom.2021.103703
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present large-eddy simulations (LES) of wind and wave-driven turbulent boundary layers in shallow water with Langmuir circulation using a variational multi-scale formulation of the Craik-Leibovich equations. The simulations are performed using Isogeometric Analysis (IGA) based on quadratic non-uniform rational basis spline (NURBS) basis functions. Wind and wave-driven turbulent boundary layers over a flat bottom surface representative of open ocean conditions in inner-shelf regions with turbulent Langmuir number La t = 0.7 and wind stress friction Reynolds number Ret= 395 are first simulated. The present results agree well with the reference results based on a spectral LES with higher mesh resolution [1]. Then, to investigate the effect of seabed topography on the turbulence, we simulate turbulent boundary layers over a sloped bottom surface with wind and wave forcing parallel to the shore, representative of a surf-shelf transition zone. We find that the Langmuir cell size increases as the water column shallows approaching onshore and the cell center shifts to the onshore direction. The mean velocity and turbulent kinetic energy along the shore are quantified. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
[1]   Experimental and numerical FSI study of compliant hydrofoils [J].
Augier, B. ;
Yan, J. ;
Korobenko, A. ;
Czarnowski, J. ;
Ketterman, G. ;
Bazilevs, Y. .
COMPUTATIONAL MECHANICS, 2015, 55 (06) :1079-1090
[2]   NURBS-based isogeometric analysis for the computation of flows about rotating components [J].
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :143-150
[3]   Isogeometric fluid-structure interaction: theory, algorithms, and computations [J].
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Zhang, Y. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :3-37
[4]   Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Reali, A. ;
Scovazzi, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :173-201
[5]   Weak imposition of Dirichlet boundary conditions in fluid mechanics [J].
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTERS & FLUIDS, 2007, 36 (01) :12-26
[6]   A new formulation for air-blast fluid-structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations [J].
Bazilevs, Y. ;
Kamran, K. ;
Moutsanidis, G. ;
Benson, D. J. ;
Onate, E. .
COMPUTATIONAL MECHANICS, 2017, 60 (01) :83-100
[7]   A new formulation for air-blast fluid-structure interaction using an immersed approach: part II-coupling of IGA and meshfree discretizations [J].
Bazilevs, Y. ;
Moutsanidis, G. ;
Bueno, J. ;
Kamran, K. ;
Kamensky, D. ;
Hillman, M. C. ;
Gomez, H. ;
Chen, J. S. .
COMPUTATIONAL MECHANICS, 2017, 60 (01) :101-116
[8]   Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method [J].
Bazilevs, Y. ;
Akkerman, I. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (09) :3402-3414
[9]   Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes [J].
Bazilevs, Y. ;
Michler, C. ;
Calo, V. M. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (13-16) :780-790
[10]  
Bazilevs Y., 2013, Computational Fluid-Structure Interaction: Methods and Applicattions, DOI DOI 10.1002/9781118483565