Deep learning for pH prediction in water desalination using membrane capacitive deionization

被引:40
作者
Son, Moon [1 ]
Yoon, Nakyung [1 ]
Jeong, Kwanho [1 ]
Abass, Ather [1 ]
Logan, Bruce E. [2 ]
Cho, Kyung Hwa [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, UNIST Gil 50, Ulsan 44919, South Korea
[2] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
基金
新加坡国家研究基金会;
关键词
Deep learning; Neural networks; Water desalination; Membrane capacitive deionization; pH; ENERGY-CONSUMPTION; REMOVAL; PHOSPHATE; CDI;
D O I
10.1016/j.desal.2021.115233
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The pH of a solution has a large influence on the ion removal efficiency of the membrane capacitive deionization (MCDI) process, an electrochemical ion separation process. We developed a convolutional neural network linked with a long short-term memory (CNN-LSTM) model based on an artificial intelligence algorithm to predict the effluent pH of MCDI, as effluent pH is difficult to predict using conventional numerical modeling. The model accurately predicted effluent pH (R2>0.998) based on the analysis of five input variables (current, voltage, influent conductivity and pH, and effluent conductivity) under standard operating conditions of MCDI using either constant-current or constant-voltage conditions. The developed model predicted effluent pH using only limited input variables, current and voltage, with high accuracy (R2>0.997). Thus, the CNN-LSTM model can be used in practical applications as only the current and voltage of MCDI cells are often monitored in field applications.
引用
收藏
页数:11
相关论文
共 47 条
  • [1] Application of Capacitive Deionisation in water desalination: A review
    AlMarzooqi, Faisal A.
    Al Ghaferi, Amal A.
    Saadat, Irfan
    Hilal, Nidal
    [J]. DESALINATION, 2014, 342 : 3 - 15
  • [2] Alom M.Z., 2018, ARXIV
  • [3] The feasibility of boron removal from water by capacitive deionization
    Avraham, Eran
    Noked, Malachi
    Soffer, Abraham
    Aurbach, Doron
    [J]. ELECTROCHIMICA ACTA, 2011, 56 (18) : 6312 - 6317
  • [4] Bergstra J., 2011, ADV NEURAL INFORM PR, V24
  • [5] pH Dependence of Phosphorus Speciation and Transport in Flow-Electrode Capacitive Deionization
    Bian, Yanhong
    Chen, Xi
    Ren, Zhiyong Jason
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (14) : 9116 - 9123
  • [6] Membrane capacitive deionization
    Biesheuvel, P. M.
    van der Wal, A.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2010, 346 (02) : 256 - 262
  • [7] Chang JJ, 2020, ENVIRON SCI-WAT RES, V6, P373, DOI [10.1039/c9ew00985j, 10.1039/C9EW00985J]
  • [8] Chollet F., 2018, Deep Learning with R. Manning Publications Co
  • [9] Energy consumption in capacitive deionization - Constant current versus constant voltage operation
    Dykstra, J. E.
    Porada, S.
    van der Wal, A.
    Biesheuvel, P. M.
    [J]. WATER RESEARCH, 2018, 143 : 367 - 375
  • [10] Theory of pH changes in water desalination by capacitive deionization
    Dykstra, J. E.
    Keesman, K. J.
    Biesheuvel, P. M.
    van der Wal, A.
    [J]. WATER RESEARCH, 2017, 119 : 178 - 186