DAUGAVET POINTS IN PROJECTIVE TENSOR PRODUCTS

被引:3
作者
Dantas, Sheldon [1 ,2 ]
Jung, Mingu [3 ,4 ]
Rueda Zoca, Abraham [5 ]
机构
[1] Univ Jaume 1, Dept Matemat, Campus Riu Sec S-N, Castellon de La Plana 12071, Spain
[2] Univ Jaume 1, Inst Univ Matemat & Aplicac Castello IMAC, Campus Riu Sec S-N, Castellon de La Plana 12071, Spain
[3] POSTECH, Basic Sci Res Inst, Pohang 790784, South Korea
[4] POSTECH, Dept Math, Pohang 790784, South Korea
[5] Univ Murcia, Dept Matemat, Campus Espinardo, Murcia 30100, Spain
基金
新加坡国家研究基金会;
关键词
OCTAHEDRAL NORMS; PROPERTY;
D O I
10.1093/qmath/haab036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are interested in studying when an element z in the projective tensor product X (circle times) over cap Y-pi turns out to be a Daugavet point. We prove first that, under some hypothesis, the assumption of X (circle times) over cap Y-pi having the Daugavet property implies the existence of a great amount of isometrics from Y into X*. Having this in mind, we provide methods for constructing non-trivial Daugavet points in X (circle times) over cap Y-pi. We show that C(K)-spaces are examples of Banach spaces such that the set of the Daugavet points in C(K)(circle times) over cap Y-pi is weakly dense when Y is a subspace of C(K)*. Finally, we present some natural results on when an elementary tensor x circle times y is a Daugavet point.
引用
收藏
页码:443 / 459
页数:17
相关论文
共 23 条
  • [1] Delta- and Daugavet points in Banach spaces
    Abrahamsen, T. A.
    Haller, R.
    Lima, V
    Pirk, K.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (02) : 475 - 496
  • [2] Abrahamsen T.A., DAUGAVETAND DELTA PO
  • [3] Octahedral norms and convex combination of slices in Banach spaces
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) : 2424 - 2435
  • [4] DEFANT A, 1993, TENSOR NORMS OPERATO
  • [5] Guralnick R. M., MEM AM MATH SOC
  • [6] Haller R, 2021, J CONVEX ANAL, V28, P41
  • [7] Harmand P., 1993, M IDEALS BANACH SPAC, V1547, P387
  • [8] Ivakhno Y., 2004, VISN KHARK U MPMM, V645, P30
  • [9] Jung M., DAUGAVET POINT DELTA
  • [10] Banach spaces with the Daugavet property
    Kadets, VM
    Shvidkoy, RV
    Sirotkin, GG
    Werner, D
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (02) : 855 - 873