Hierarchical porous graphitic carbon for high-performance supercapacitors at high temperature

被引:12
作者
Chen, Chong [1 ]
Yu, Dengfeng [2 ]
Zhao, Gongyuan [1 ]
Sun, Lei [1 ]
Sun, Yinyong [1 ]
Leng, Kunyue [1 ]
Yu, Miao [1 ]
Sun, Ye [2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Condensed Matter Sci & Technol Inst, Harbin 150001, Peoples R China
来源
RSC ADVANCES | 2017年 / 7卷 / 55期
基金
中国国家自然科学基金;
关键词
THERMAL-DECOMPOSITION; ELECTRODE MATERIAL; MESOPOROUS CARBON; ENERGY-STORAGE; IONIC LIQUIDS; GRAPHENE; NANOSTRUCTURES; CHALLENGES; DESIGN;
D O I
10.1039/c7ra06234f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing supercapacitors with high energy density without sacrificing the power density and cycle life has attracted enormous attention. Hierarchical porous graphitic carbons (HPGCs) have been demonstrated to be promising candidates. However, the complicated, energy-intensive synthesis and the difficult post-treatment for the reported synthetic HPGCs have confined the potential for large-scale production and practical applications. In this work, HPGCs have been fabricated by a one-step metallothermic reaction, using magnesium, urea, and zinc acetate dehydrate, showing a distinct hierarchical porous structure with graphitic domains. The assembled supercapacitors exhibit excellent performance at 150 degrees C, resulting in an energy density of 16 W h kg(-1) (with a power density of 500 W kg(-1)). Moreover, the HPGC shows a high cycling stability (5% loss after 30 000 cycles), and ultrahigh capacitance retention, i.e. 70% at 5 A g(-1) and 62% at 10 A g(-1) using EMIMBF4 electrolyte, and 70% at 400 mV s(-1) and 77% at 20 A g(-1) using 6 mol L-1 KOH electrolyte. Most importantly, the universality of this new metallothermic method of HPGC fabrication has been demonstrated by replacing urea with other chemical substances. Such a facile synthesis may have provided a fresh route to produce HPGCs with excellent supercapacitive performance.
引用
收藏
页码:34488 / 34496
页数:9
相关论文
共 50 条
  • [31] Activated Porous Carbon Nanofibers for High-Performance Supercapacitors
    Islam, Moyinul
    Lu, Xing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (04): : 3856 - 3870
  • [32] Green synthesis of hierarchical porous carbon with adjustable porosity for high performance supercapacitors
    Qiao, Yalei
    Zhang, Rong
    Li, Ruimin
    Fang, Wei
    Cui, Zixiang
    Zhang, Ding
    DIAMOND AND RELATED MATERIALS, 2021, 117 (117)
  • [33] Co nanoparticle-loaded porous carbon for high-performance supercapacitors
    Zhao, Dongmei
    Hu, Jiayuan
    Shi, Jiying
    Zhao, Yanmei
    Xu, Zhanpeng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (08):
  • [34] Hierarchical porous graphitized carbon xerogel for high performance supercapacitor
    Chen, Ling
    Deng, Junqian
    Yuan, Yang
    Hong, Shu
    Yan, Bing
    He, Shuijian
    Lian, Hailan
    DIAMOND AND RELATED MATERIALS, 2022, 121
  • [35] Polyaniline-modified graphitic carbon nitride as electrode materials for high-performance supercapacitors
    Qin, Xin
    Wan, Jianbo
    Zhang, Qi
    Zhang, Yongjie
    Yu, Huangzhong
    Shi, Shengwei
    CARBON LETTERS, 2023, 33 (03) : 781 - 790
  • [36] Nitrogen-Doped Hierarchical Porous Carbon Nanowhisker Ensembles on Carbon Nanofiber for High-Performance Supercapacitors
    Zhang, Jianan
    Zhang, Xianglan
    Zhou, Yunchun
    Guo, Shaojun
    Wang, Kaixi
    Liang, Zhiqiang
    Xu, Qun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2014, 2 (06): : 1525 - 1533
  • [37] Heteroatom-doped layered hierarchical porous carbon electrodes with high mass loadings for high-performance supercapacitors
    Niu, Yuan
    Guo, Maoqiang
    Zhang, Yuting
    Yang, Jie
    Zhang, Xin
    Gao, Yige
    Wang, Xianli
    Sheng, Lizhi
    Shi, Junyou
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [38] Hierarchical Microporous/Mesoporous Carbon Nanosheets for High-Performance Supercapacitors
    Fuertes, Antonio B.
    Sevilla, Marta
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (07) : 4344 - 4353
  • [39] Hierarchical N- and O-Doped Porous Carbon Composites for High-Performance Supercapacitors
    Zou, Ben-Xue
    Wang, Yan
    Huang, Xiaodong
    Lu, Yanhua
    JOURNAL OF NANOMATERIALS, 2018, 2018
  • [40] Hierarchical Porous Carbon Spheres from Low-Density Polyethylene for High-Performance Supercapacitors
    Zhang, Hua
    Zhou, Xiao-Li
    Shao, Li-Ming
    Lu, Fan
    He, Pin-Jing
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (04): : 3801 - 3810