Optimal control of a quasi-variational obstacle problem

被引:24
作者
Adly, Samir [1 ]
Bergounioux, Maitine [2 ]
Mansour, Mohamed Ait [3 ]
机构
[1] Univ Limoges, CNRS, XLIM, UMR 6172, F-87060 Limoges, France
[2] Univ Orleans, UMR 6628, MAPMO, F-45067 Orleans 2, France
[3] Fac Poly Disciplinaire, Safi 46000, Morocco
关键词
Optimal control; Quasi-variational inequalities; Mosco convergence; EXISTENCE;
D O I
10.1007/s10898-008-9366-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider an optimal control where the state-control relation is given by a quasi-variational inequality, namely a generalized obstacle problem. We give an existence result for solutions to such a problem. The main tool is a stability result, based on the Mosco-convergence theory, that gives the weak closeness of the control-to-state operator. We end the paper with some examples.
引用
收藏
页码:421 / 435
页数:15
相关论文
共 29 条
[1]  
Adly S, 2005, B UNIONE MAT ITAL, V8B, P767
[2]  
[Anonymous], 1993, Lecture Notes in Mathematics
[3]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[4]   Existence conditions in general quasimonotone variational inequalities [J].
Aussel, D ;
Luc, DT .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 71 (02) :285-303
[5]  
Baiocchi C., 1984, VARIATIONAL QUASIVAR
[6]  
Barbu V., 1993, Analysis and control of nonlinear infinite dimensional systems
[7]  
BAZAN FF, 2000, SIAM J OPTIMIZ, V3, P675
[8]  
BENSOUSSAN A, 1982, CONTRLE IMPULSIONNEL
[9]   Optimal control of bilateral obstacle problems [J].
Bergounioux, M ;
Lenhart, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (01) :240-255
[10]  
Borwein Jonathan M., 2004, Techniques of Variational Analysis