Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps

被引:30
作者
Espinosa-Soria, Alba [1 ]
Griol, Amadeu [1 ]
Martinez, Alejandro [1 ]
机构
[1] Univ Politecn Valencia, Nanophoton Technol Ctr, Camino Vera S-N, E-46022 Valencia, Spain
关键词
ENHANCED RAMAN-SPECTROSCOPY; SPLIT-RING RESONATORS; FANO RESONANCE; LIGHT; PHOTONICS; ANTENNAS; NANOANTENNA; SCATTERING; PLATFORM;
D O I
10.1364/OE.24.009592
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we report numerical simulations and experiments of the optical response of a gold nanostrip embedded in a silicon strip waveguide gap at telecom wavelengths. We show that the spectral features observed in transmission and reflection when the metallic nanostructure is inserted in the gap are extremely different than those observed in free-space excitation. First, we find that interference between the guided field and the electric dipolar resonance of the metallic nanostructure results in high-contrast (> 10) spectral features showing an asymmetric Fano spectral profile. Secondly, we reveal a crossing in the transmission and reflection responses close to the nanostructure resonance wavelength as a key feature of our system. This approach, which can be realized using standard semiconductor nanofabrication tools, could lead to a full exploitation of the extreme properties of subwavelength metallic nanostructures in an on-chip configuration, with special relevance in fields such as biosensing or optical switching. (C)2016 Optical Society of America
引用
收藏
页码:9592 / 9601
页数:10
相关论文
共 35 条
[1]   Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide [J].
Alepuz-Benaches, Irene ;
Garcia-Meca, Carlos ;
Rodriguez-Fortuno, Francisco J. ;
Ortuno, Ruben ;
Lorente-Crespo, Maria ;
Griol, Amadeu ;
Martinez, Alejandro .
NANOPHOTONICS IV, 2012, 8424
[2]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[3]  
Aouani H, 2014, NAT NANOTECHNOL, V9, P290, DOI [10.1038/NNANO.2014.27, 10.1038/nnano.2014.27]
[4]   Robustness of plasmon phased array nanoantennas to disorder [J].
Arango, Felipe Bernal ;
Thijssen, Rutger ;
Brenny, Benjamin ;
Coenen, Toon ;
Koenderink, A. Femius .
SCIENTIFIC REPORTS, 2015, 5
[5]   Plasmonic Antennas Hybridized with Dielectric Waveguides [J].
Arango, Felipe Bernal ;
Kwadrin, Andrej ;
Koenderink, A. Femius .
ACS NANO, 2012, 6 (11) :10156-10167
[6]   Scattering of a plasmonic nanoantenna embedded in a silicon waveguide [J].
Castro-Lopez, M. ;
de Sousa, N. ;
Garcia-Martin, A. ;
Gardes, F. Y. ;
Sapienza, R. .
OPTICS EXPRESS, 2015, 23 (22) :28108-28118
[7]   Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy [J].
Chamanzar, Maysamreza ;
Xia, Zhixuan ;
Yegnanarayanan, Siva ;
Adibi, Ali .
OPTICS EXPRESS, 2013, 21 (26) :32086-32098
[8]   Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells [J].
Chettiar, Uday K. ;
Garcia, Roberto Fernandez ;
Maier, Stefan A. ;
Engheta, Nader .
OPTICS EXPRESS, 2012, 20 (14) :16104-16112
[9]   Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides [J].
Daldosso, N ;
Melchiorri, M ;
Riboli, F ;
Sbrana, F ;
Pavesi, L ;
Pucker, G ;
Kompocholis, C ;
Crivellari, M ;
Bellutti, P ;
Lui, A .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2004, 7 (4-6) :453-458
[10]  
Espinosa-Soria A., TRANSVERSE SPIN SPIN