Tutorial: Common path self-referencing digital holographic microscopy

被引:57
作者
Anand, A. [1 ]
Chhaniwal, V. [1 ]
Javidi, B. [2 ]
机构
[1] Maharaja Sayajirao Univ Baroda, Dept Appl Phys, Opt Lab, Fac Engn & Technol, Vadodara 390001, India
[2] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
QUANTITATIVE PHASE MICROSCOPY; RED-BLOOD-CELLS; IMAGING UNIT; LIVING CELLS; IDENTIFICATION; CONTRAST; DYNAMICS; INTERFEROMETRY; COMPACT; TOMOGRAPHY;
D O I
10.1063/1.5027081
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantitative phase imaging of cells provides important morphological information about them, leading to their characterization, comparison, and identification. The interference principle when applied to microscopy provides high-contrast quantitative phase images of otherwise transparent objects along with their thickness information. The two-beam off-axis geometry of interference microscopes, in which the light beam interacting with the object interferes with a separate reference beam, is preferred since it leads to single shot quantitative phase imaging methodologies. But these techniques lead to bulky setups, with lower temporal stability not suitable for the measurement of nanometer-level cell thickness fluctuations. Self-referencing interference microscopes manipulate a portion of the light beam interacting with the cells to act as the reference, leading to compact, temporally stable geometries ideal for the measurement of cell dynamics. Here we present an overview of our efforts in the development of self-referencing digital holographic microscopes and their use in quantitative phase imaging of cells. (C) 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.
引用
收藏
页数:13
相关论文
共 68 条
[1]   Single beam Fourier transform digital holographic quantitative phase microscopy [J].
Anand, A. ;
Faridian, A. ;
Chhaniwal, V. K. ;
Mahajan, S. ;
Trivedi, V. ;
Dubey, S. K. ;
Pedrini, G. ;
Osten, W. ;
Javidi, B. .
APPLIED PHYSICS LETTERS, 2014, 104 (10)
[2]   Compact, common path quantitative phase microscopic techniques for imaging cell dynamics [J].
Anand, A. ;
Vora, P. ;
Mahajan, S. ;
Trivedi, V. ;
Chhaniwal, V. ;
Singh, A. ;
Leitgeb, R. ;
Javidi, B. .
PRAMANA-JOURNAL OF PHYSICS, 2014, 82 (01) :71-78
[3]   Automatic Identification of Malaria-Infected RBC With Digital Holographic Microscopy Using Correlation Algorithms [J].
Anand, A. ;
Chhaniwal, V. K. ;
Patel, N. R. ;
Javidi, B. .
IEEE PHOTONICS JOURNAL, 2012, 4 (05) :1456-1464
[4]   Imaging Embryonic Stem Cell Dynamics Using Quantitative 3-D Digital Holographic Microscopy [J].
Anand, A. ;
Chhaniwal, V. K. ;
Javidi, B. .
IEEE PHOTONICS JOURNAL, 2011, 3 (03) :546-554
[5]   Automated Disease Identification With 3-D Optical Imaging: A Medical Diagnostic Tool [J].
Anand, Arun ;
Moon, Inkyu ;
Javidi, Bahram .
PROCEEDINGS OF THE IEEE, 2017, 105 (05) :924-946
[6]   Digital holographic microscopy for automated 3D cell identification: an overview [J].
Anand, Arun ;
Javidi, Bahram .
CHINESE OPTICS LETTERS, 2014, 12 (06)
[7]   Real-Time Digital Holographic Microscopy for Phase Contrast 3D Imaging of Dynamic Phenomena [J].
Anand, Arun ;
Chhaniwal, Vani K. ;
Javidi, Bahram .
JOURNAL OF DISPLAY TECHNOLOGY, 2010, 6 (10) :500-505
[8]  
[Anonymous], 2012, FUNDAMENTALS LIGHT M, DOI DOI 10.1002/9781118382905.CH7
[9]   Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis [J].
Baffou, Guillaume ;
Bon, Pierre ;
Savatier, Julien ;
Polleux, Julien ;
Zhu, Min ;
Merlin, Marine ;
Rigneault, Herve ;
Monneret, Serge .
ACS NANO, 2012, 6 (03) :2452-2458
[10]   INTERFERENCE MICROSCOPY AND MASS DETERMINATION [J].
BARER, R .
NATURE, 1952, 169 (4296) :366-367