Stability analysis of Runge-Kutta methods for Volterra integro-differential equations

被引:8
作者
Wen, Jiao [1 ]
Huang, Chengming [1 ,2 ]
Li, Min [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Runge-Kutta method; Volterra integro-differential equation; Convolution test equation; Collocation method; Stability; NUMERICAL-METHODS;
D O I
10.1016/j.apnum.2019.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the stability properties of Runge-Kutta methods for Volterra integro-differential equations. Both the basic test equation and a convolution test equation are considered. Some fixed order recurrence relations and the corresponding stability conditions are derived for general methods. The concept of V-0-stability is introduced for the convolution test equation and some V-0-stable one-stage methods are found. The A(0)-stability and V-0-stability of the fully implicit discretized collocation methods with one or two stages are investigated in details. Finally, some numerical experiments are given to illustrate the obtained theoretical results. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 88
页数:16
相关论文
共 20 条
[1]   THE BARYCENTRIC RATIONAL DIFFERENCE-QUADRATURE SCHEME FOR SYSTEMS OF VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS [J].
Abdi, Ali ;
Hosseini, Seyyed Ahmad .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03) :A1936-A1960
[2]   REGIONS OF STABILITY IN THE NUMERICAL TREATMENT OF VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS [J].
BAKER, CTH ;
MAKROGLOU, A ;
SHORT, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (06) :890-910
[3]   STABILITY OF NUMERICAL-METHODS FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS OF CONVOLUTION TYPE [J].
BAKKE, VL ;
JACKIEWICZ, Z .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (02) :89-100
[4]   STABILITY ANALYSIS OF RUNGE-KUTTA METHODS FOR VOLTERRA INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
BELLEN, A ;
JACKIEWICZ, Z ;
VERMIGLIO, R ;
ZENNARO, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) :103-118
[5]  
BRUNNER H, 1984, MATH COMPUT, V42, P95, DOI 10.1090/S0025-5718-1984-0725986-6
[6]   STABILITY OF NUMERICAL-METHODS FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS [J].
BRUNNER, H ;
LAMBERT, JD .
COMPUTING, 1974, 12 (01) :75-89
[7]  
Brunner H., 2004, COLLOCATION METHODS
[8]  
Brunner H., 1980, AFDELING NUMERIEKE W, V84, pii+12
[9]   Multistep collocation methods for Volterra integro-differential equations [J].
Cardone, Angelamaria ;
Conte, Dajana .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 :770-785
[10]  
Crisci M.R., 1992, J INTEGRAL EQUATIONS, P491