Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: A global meta-analysis

被引:51
|
作者
You, Chengming [1 ]
Wu, Fuzhong [1 ]
Yang, Wanqin [1 ]
Xu, Zhenfeng [1 ]
Tan, Bo [1 ]
Yue, Kai [1 ]
Ni, Xiangyin [1 ]
机构
[1] Sichuan Agr Univ, Inst Ecol & Forestry, Prov Key Lab Ecol Forestry Engn, Long Term Res Stn Alpine Forest Ecosyst, 211 Huimin Rd, Chengdu 611130, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
N deposition; Foliar N and P concentrations; Foliar N-to-P ratio; Nutrient-limited conditions; Global meta-analysis; ELEVATED CARBON-DIOXIDE; PLANT DIVERSITY; EXCESS NITROGEN; LEAF NITROGEN; FRESH-WATER; LIMITATION; DEPOSITION; RESORPTION; FOREST; RATIOS;
D O I
10.1016/j.envpol.2018.06.018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To test the hypothesis that nutrient-limited conditions can determine the responses of nitrogen (N) and phosphorus (P) stoichiometry to N addition, a meta-analysis was conducted to identify the different responses of foliar N and P concentrations and N-to-P ratios to N addition under N limitation, N and P co-limitation and P limitation. N addition increased the foliar N-to-P ratios and N concentrations by 46.2% and 30.2%, respectively, under N limitation, by 18.7% and 19.7% under N and P co-limitation, and by 4.7% and 12.9% under P limitation. However, different responses of foliar P concentrations to N addition were observed under different nutrient limitations, and negative, positive, and neutral effects on P concentrations were observed under N limitation, P limitation and N and P co-limitation, respectively. Generally, the effects of N addition on N-to-P ratios and N concentrations in herbaceous plants were dramatically larger than those in woody plants (with the exception of the N-to-P ratio under N limitation), but the opposite situation was true for P concentrations. The changes in N-to-P ratios were closely correlated with the changes in N and P concentrations, indicating that the changes in both N and P concentrations due to N addition can drive N and P stoichiometry, but the relative sizes of the contributions of N and P varied greatly with different nutrient limitations. Specifically, the changes in N-to-P ratios may indicate a minimum threshold, which is consistent with the homeostatic mechanism. In brief, increasing N deposition may aggravate P limitation under N-limited conditions but improve P limitation under P limited conditions. The findings highlight the importance of nutrient-limited conditions in the stoichiometric response to N addition, thereby advancing our ability to predict global plant growth with increasing N deposition in the future. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:740 / 749
页数:10
相关论文
共 50 条
  • [1] Responses of Foliar Nutrient Status and Stoichiometry to Nitrogen Addition in Different Ecosystems: A Meta-analysis
    Mao, Jinhua
    Mao, Qinggong
    Zheng, Mianhai
    Mo, Jiangming
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2020, 125 (02)
  • [2] Nitrogen addition mediates the response of foliar stoichiometry to phosphorus addition: a meta-analysis
    You, Chengming
    Peng, Changhui
    Xu, Zhenfeng
    Liu, Yang
    Zhang, Li
    Yin, Rui
    Liu, Lin
    Li, Han
    Wang, Lixia
    Liu, Sining
    Tan, Bo
    Kardol, Paul
    ECOLOGICAL PROCESSES, 2021, 10 (01)
  • [3] Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests
    Ostertag, Rebecca
    PLANT AND SOIL, 2010, 334 (1-2) : 85 - 98
  • [4] Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis
    Deng, Qi
    Hui, Dafeng
    Dennis, Sam
    Reddy, K. Chandra
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2017, 26 (06): : 713 - 728
  • [5] Contrasting responses of nitrogen: Phosphorus stoichiometry in plants and soils under grazing: A global meta-analysis
    Yu, Rui-Peng
    Zhang, Wei-Ping
    Fornara, Dario A.
    Li, Long
    JOURNAL OF APPLIED ECOLOGY, 2021, 58 (05) : 964 - 975
  • [6] Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis
    Lu, Meng
    Yang, Yuanhe
    Luo, Yiqi
    Fang, Changming
    Zhou, Xuhui
    Chen, Jiakuan
    Yang, Xin
    Li, Bo
    NEW PHYTOLOGIST, 2011, 189 (04) : 1040 - 1050
  • [7] Responses of plant phenology to nitrogen addition: a meta-analysis
    Wang, Chao
    Tang, Yujia
    OIKOS, 2019, 128 (09) : 1243 - 1253
  • [8] Differential Responses of Soil Phosphorus Fractions to Nitrogen and Phosphorus Fertilization: A Global Meta-Analysis
    Yu, Qingshui
    Hagedorn, Frank
    Penuelas, Josep
    Sardans, Jordi
    Tan, Xiangping
    Yan, Zhengbing
    He, Chenqi
    Ni, Xiaofeng
    Feng, Yuhao
    Zhu, Jiangling
    Ji, Chengjun
    Tang, Zhiyao
    Li, Mai-He
    Fang, Jingyun
    GLOBAL BIOGEOCHEMICAL CYCLES, 2024, 38 (07)
  • [9] Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis
    Han, Yunfeng
    Feng, Jiguang
    Han, Mengguang
    Zhu, Biao
    GLOBAL CHANGE BIOLOGY, 2020, 26 (12) : 7229 - 7241
  • [10] Global Systematic Review with Meta-analysis Shows Responses of Forest Greenhouse Gas Emissions under Single Nitrogen, Single Phosphorus, or Interactive Nitrogen and Phosphorus Addition
    Wang, Shijia
    Guo, Yafen
    Cui, Xiaoyang
    Du, Sicheng
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2024, 24 (03) : 5841 - 5853