Bilevel programming problems with simple convex lower level

被引:2
作者
Mehlitz, Patrick [1 ]
机构
[1] Tech Univ Bergakad Freiberg, Fac Math & Comp Sci, D-09596 Freiberg, Germany
关键词
Bilevel programming; optimization in Banach spaces; nonsmooth optimization; DC-programming; optimal control; OPTIMALITY CONDITIONS; MARGINAL FUNCTIONS;
D O I
10.1080/02331934.2015.1122006
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This article is dedicated to the study of bilevel optimal control problems equipped with a fully convex lower level of special structure. In order to construct necessary optimality conditions, we consider a general bilevel programming problem in Banach spaces possessing operator constraints, which is a generalization of the original bilevel optimal control problem. We derive necessary optimality conditions for the latter problem using the lower level optimal value function, ideas from DC-programming and partial penalization. Afterwards, we apply our results to the original optimal control problem to obtain necessary optimality conditions of Pontryagin-type. Along the way, we derive a handy formula, which might be used to compute the subdifferential of the optimal value function which corresponds to the lower level parametric optimal control problem.
引用
收藏
页码:1203 / 1227
页数:25
相关论文
共 50 条
  • [31] Bilevel programming and price setting problems
    Labbe, Martine
    Violin, Alessia
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2013, 11 (01): : 1 - 30
  • [32] Bilevel programming and price setting problems
    Labbe, Martine
    Violin, Alessia
    ANNALS OF OPERATIONS RESEARCH, 2016, 240 (01) : 141 - 169
  • [33] Stability of Regularized Bilevel Programming Problems
    M. B. Lignola
    J. Morgan
    Journal of Optimization Theory and Applications, 1997, 93 : 575 - 596
  • [34] Bilevel programming and price setting problems
    Martine Labbé
    Alessia Violin
    4OR, 2013, 11 : 1 - 30
  • [35] SENSITIVITY ANALYSIS FOR TWO-LEVEL VALUE FUNCTIONS WITH APPLICATIONS TO BILEVEL PROGRAMMING
    Dempe, S.
    Mordukhovich, B. S.
    Zemkoho, A. B.
    SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (04) : 1309 - 1343
  • [36] Using neural networks to solve linear bilevel problems with unknown lower level
    Molan, Ioana
    Schmidt, Martin
    OPTIMIZATION LETTERS, 2023, 17 (05) : 1083 - 1103
  • [37] On Bilevel Programs with a Convex Lower-Level Problem Violating Slater's Constraint Qualification
    Li, Gaoxi
    Wan, Zhongping
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 179 (03) : 820 - 837
  • [38] GENERIC PROPERTY OF THE PARTIAL CALMNESS CONDITION FOR BILEVEL PROGRAMMING PROBLEMS*
    Ke, Rongzhu
    Yao, Wei
    Ye, Jane J.
    Zhang, Jin
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 604 - 634
  • [39] A two-level vertex-searching global algorithm framework for bilevel linear fractional programming problems
    Chen, Hui-Ju
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2020, 8 (01): : 488 - 499
  • [40] Optimality Conditions in Bilevel Multiobjective Programming Problems
    Liu, Yulan
    Mei, Jialiu
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2009, 33 (01) : 79 - 87