A hyperchaotic system from the Rabinovich system

被引:43
作者
Liu, Yongjian [1 ,2 ]
Yang, Qigui [1 ]
Pang, Guoping [2 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] Yulin Normal Univ, Dept Math & Computat Sci, Yulin 537000, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperchaos; Ultimate boundedness; Lyapunov exponents; Bifurcation; LORENZ-SYSTEM; CHAOTIC SYSTEM; ATTRACTORS;
D O I
10.1016/j.cam.2009.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new 4D hyperchaotic system which is constructed by a linear controller to the 3D Rabinovich chaotic system. Some complex dynamical behaviors such as boundedness, chaos and hyperchaos of the 4D autonomous system are investigated and analyzed. A theoretical and numerical study indicates that chaos and hyperchaos are produced with the help of a Lienard-like oscillatory motion around a hypersaddle stationary point at the origin. The corresponding bounded hyperchaotic and chaotic attractors are first numerically verified through investigating phase trajectories, Lyapunov exponents, bifurcation path and Poincare projections. Finally, two complete mathematical characterizations for 40 Hopf bifurcation are rigorously derived and studied. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 20 条
  • [1] [Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
  • [2] Dynamics of a hyperchaotic Lorenz system
    Barboza, Ruy
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (12): : 4285 - 4294
  • [3] Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
  • [4] Hassard B.D., 1982, THEORY APPL HOPF BIF
  • [5] Bounds for attractors and the existence of homoclinic orbits in the Lorenz system
    Leonov, GA
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2001, 65 (01): : 19 - 32
  • [6] LOCALIZING THE ATTRACTOR OF THE LORENZ-SYSTEM
    LEONOV, GA
    BUNIN, AI
    KOKSCH, N
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (12): : 649 - 656
  • [7] Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system
    Li, Damei
    Wu, Xiaoqun
    Lu, Jun-an
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1290 - 1296
  • [8] Controlling a unified chaotic system to hyperchaotic
    Li, YX
    Chen, GR
    Tang, WKS
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2005, 52 (04) : 204 - 207
  • [9] On the global dynamics of the Rabinovich system
    Llibre, Jaume
    Messias, Marcelo
    da Silva, Paulo R.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (27)
  • [10] LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO