Superregular matrices and applications to convolutional codes

被引:30
作者
Almeida, P. J. [1 ]
Napp, D. [1 ]
Pinto, R. [1 ]
机构
[1] Univ Aveiro, Dept Math, CIDMA Ctr Res & Dev Math & Applicat, P-3800 Aveiro, Portugal
关键词
Convolutional code; Forney indices; Optimal code; Superregular matrix; MDS CODES;
D O I
10.1016/j.laa.2016.02.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main results of this paper are twofold: the first one is a matrix theoretical result. We say that a matrix is superregular if all of its minors, that are not trivially zero are nonzero. Given a a x b, a >= b, superregular matrix over a field, we show that if all of its rows are nonzero then any linear combination of its columns, with nonzero coefficients, has at least a b 1 nonzero entries. Secondly, we make use of this result to construct convolutional codes that attain the maximum possible distance for some fixed parameters of the code, namely, the rate and the Forney indices. These results answer some open questions on distances and constructions of convolutional codes posted in the literature [6,9]. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 15 条
[1]   A new class of superregular matrices and MDP convolutional codes [J].
Almeida, P. ;
Napp, D. ;
Pinto, R. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (07) :2145-2157
[2]   TOTALLY POSITIVE MATRICES [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 :165-219
[3]   Circular planar graphs and resistor networks [J].
Curtis, EB ;
Ingerman, D ;
Morrow, JA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 283 (1-3) :115-150
[4]  
FORNEY GD, 1975, SIAM J CONTROL, V13, P493, DOI 10.1137/0313029
[5]  
Gantmacher F.R., 1959, The theory of matrices. Vols, V1, P2
[6]   Strongly-MDS convolutional codes [J].
Gluesing-Luerssen, H ;
Rosenthal, J ;
Smarandache, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :584-598
[7]   On superregular matrices and MDP convolutional codes [J].
Hutchinson, Ryan ;
Smarandache, Roxana ;
Trumpf, Jochen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) :2585-2596
[8]  
MCELIECE RJ, 1998, HDB CODING THEORY, V1
[9]  
Pinkus A., 2009, CAMBRIDGE TRACTS MAT, V181
[10]   Maximum distance separable convolutional codes [J].
Rosenthal, J ;
Smarandache, R .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1999, 10 (01) :15-32