Dynamics and nonequilibrium states in the Hamiltonian mean-field model: A closer look

被引:28
作者
Zanette, DH [1 ]
Montemurro, MA
机构
[1] Ctr Atom Bariloche, Consejo Nacl Invest Cient & Tecn, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 03期
关键词
D O I
10.1103/PhysRevE.67.031105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We critically revisit the evidence for the existence of quasistationary states in the globally coupled XY (or Hamiltonian mean-field) model. A slow-relaxation regime at long times is clearly revealed by numerical realizations of the model, but no traces of quasistationarity are found during the earlier stages of the evolution. We point out the nonergodic properties of this system in the short-time range, which makes a standard statistical description unsuitable. New aspects of the evolution during the nonergodic regime, and of the energy distribution function in the final approach to equilibrium, are disclosed.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Mean-Field Dynamics for the Nelson Model with Fermions [J].
Nikolai Leopold ;
Sören Petrat .
Annales Henri Poincaré, 2019, 20 :3471-3508
[32]   Glauber Dynamics for the Mean-Field Potts Model [J].
Cuff, P. ;
Ding, J. ;
Louidor, O. ;
Lubetzky, E. ;
Peres, Y. ;
Sly, A. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (03) :432-477
[33]   Construction of traveling clusters in the Hamiltonian mean-field model by nonequilibrium statistical mechanics and Bernstein-Greene-Kruskal waves [J].
Yamaguchi, Yoshiyuki Y. .
PHYSICAL REVIEW E, 2011, 84 (01)
[34]   Solving nonequilibrium dynamical mean-field theory using matrix product states [J].
Wolf, F. Alexander ;
McCulloch, Ian P. ;
Schollwoeck, Ulrich .
PHYSICAL REVIEW B, 2014, 90 (23)
[35]   Nonequilibrium magnetization reversal by periodic impulsive fields in Ising mean-field dynamics [J].
Acharyya, Muktish .
PHYSICA SCRIPTA, 2010, 82 (06)
[36]   Hamiltonian mean-field model: effect of temporal perturbation in coupling matrix [J].
Bhadra, Nivedita ;
Patra, Soumen K. .
MODERN PHYSICS LETTERS B, 2018, 32 (14)
[37]   MODEL HAMILTONIAN FOR ORIENTATIONAL ORDER - MEAN-FIELD THEORY FOR HEXAGONAL SYMMETRY [J].
REMLER, DK ;
HAYMET, ADJ .
PHYSICAL REVIEW B, 1987, 35 (01) :245-247
[38]   Complexity and disequilibrium in the dipole-type Hamiltonian mean-field model [J].
Atenas, B. ;
Curilef, S. ;
Pennini, F. .
CHAOS, 2022, 32 (11)
[39]   Collisional relaxation in the inhomogeneous Hamiltonian mean-field model: Diffusion coefficients [J].
Benetti, F. P. C. ;
Marcos, B. .
PHYSICAL REVIEW E, 2017, 95 (02)
[40]   Quantum fluctuations inhibit symmetry breaking in the Hamiltonian mean-field model [J].
Plestid, Ryan ;
Lambert, James .
PHYSICAL REVIEW E, 2020, 101 (01)