Total extrinsic curvature of certain distributions on closed spaces of constant curvature

被引:7
作者
Brito, FB
Naveira, AM
机构
[1] Univ Sao Paulo, Inst Matemat & Estatist, BR-05315970 Sao Paulo, Brazil
[2] Fac Matemat, Dept Geometria & Topol, Valencia 46100, Spain
关键词
curvature; distributions; foliations; integral formula; totally geodesic;
D O I
10.1023/A:1006784702342
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An integral formula for symmetric functions of curvature of distributions on closed constant nonnegative sectional curvature spaces is proved. The distributions under consideration are orthogonal to a totally geodesic foliation and the main theorem extends a previous result concerning the total curvature of codimension-one foliations.
引用
收藏
页码:371 / 383
页数:13
相关论文
共 11 条
[1]   AVERAGE GAUSSIAN CURVATURE OF LEAVES OF FOLIATIONS [J].
ASIMOV, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (01) :131-133
[2]  
BRITO F, 1981, J DIFFER GEOM, V16, P19
[3]   A REMARK ON MINIMAL FOLIATIONS OF CODIMENSION-2 [J].
BRITO, F .
TOHOKU MATHEMATICAL JOURNAL, 1984, 36 (03) :341-350
[4]  
BRITO FGB, 1981, J DIFFER GEOM, V16, P675
[5]  
GLUCK H, 1983, DUKE MATH J, V50, P1041, DOI 10.1215/S0012-7094-83-05044-5
[6]   GREAT-CIRCLE FIBRATIONS OF THE 3-SPHERE [J].
GLUCK, H ;
WARNER, FW .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (01) :107-132
[7]   ON THE VOLUME OF A UNIT VECTOR FIELD ON THE 3-SPHERE [J].
GLUCK, H ;
ZILLER, W .
COMMENTARII MATHEMATICI HELVETICI, 1986, 61 (02) :177-192
[8]  
NAVEIRA AA, 1995, P 7 INT C DIFF GEOM, P29
[9]   SOME REMARKS ON MINIMAL FOLIATIONS [J].
OSHIKIRI, GI .
TOHOKU MATHEMATICAL JOURNAL, 1987, 39 (02) :223-229
[10]   A REMARK ON MINIMAL FOLIATIONS [J].
OSHIKIRI, GI .
TOHOKU MATHEMATICAL JOURNAL, 1981, 33 (01) :133-137