Accounting formodel error in strong-constraint 4D-Var data assimilation

被引:23
作者
Howes, K. E. [1 ]
Fowler, A. M. [1 ,2 ]
Lawless, A. S. [1 ,2 ]
机构
[1] Univ Reading, Sch Math Phys & Computat Sci, Reading, Berks, England
[2] Univ Reading, Natl Ctr Earth Observat, Reading, Berks, England
关键词
strong constraint; weak constraint; variational data assimilation; model-error covariances; VARIATIONAL DATA ASSIMILATION; MINUS-ANALYSIS STATISTICS; MODEL-ERROR; SYSTEM;
D O I
10.1002/qj.2996
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The strong-constraint formulation of four-dimensional variational data assimilation (4D-Var) assumes that the model used in the process perfectly describes the true dynamics of the system. However, this assumption often does not hold and the use of an erroneous model in strong-constraint 4D-Var can lead to a sub-optimal estimation of the initial conditions. We show how the presence of model error can be correctly accounted for in strong constraint 4D-Var by allowing for errors in both the observations and the model when considering the statistics of the innovation vector. We demonstrate that, when these combined model error and observation-error statistics are used in place of the standard observation error statistics in the strong-constraint formulation of 4D-Var, a statistically more accurate estimate of the initial state is obtained. The calculation of the combined model error and observation-error statistics requires the specification of model error covariances, which in practice are often unknown. We present a method to estimate the combined statistics from innovation data that does not require explicit specification of the model error covariances. Numerical experiments using the linear advection equation and a simple nonlinear coupled model demonstrate the success of the new methods in reducing the error in the estimate of the initial state, even in the case when only the uncorrelated part of the model error is accounted for.
引用
收藏
页码:1227 / 1240
页数:14
相关论文
共 35 条
  • [1] Andersson E., 2003, RECENT DEV DATA ASSI
  • [2] [Anonymous], 2006, Dynamic Data Assimilation: a Least Squares Approach
  • [3] A generic approach to explicit simulation of uncertainty in the NEMO ocean model
    Brankart, J-M
    Candille, G.
    Garnier, F.
    Calone, C.
    Melet, A.
    Bouttier, P-A
    Brasseur, P.
    Verron, J.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (05) : 1285 - 1297
  • [4] Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System
    Buizza, R
    Miller, M
    Palmer, TN
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1999, 125 (560) : 2887 - 2908
  • [5] Causon D.M., 2010, Introductory Finite Difference Methods for PDEs
  • [6] A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
    Crank, J
    Nicolson, P
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (3-4) : 207 - 226
  • [7] The ERA-Interim reanalysis: configuration and performance of the data assimilation system
    Dee, D. P.
    Uppala, S. M.
    Simmons, A. J.
    Berrisford, P.
    Poli, P.
    Kobayashi, S.
    Andrae, U.
    Balmaseda, M. A.
    Balsamo, G.
    Bauer, P.
    Bechtold, P.
    Beljaars, A. C. M.
    van de Berg, L.
    Bidlot, J.
    Bormann, N.
    Delsol, C.
    Dragani, R.
    Fuentes, M.
    Geer, A. J.
    Haimberger, L.
    Healy, S. B.
    Hersbach, H.
    Holm, E. V.
    Isaksen, L.
    Kallberg, P.
    Koehler, M.
    Matricardi, M.
    McNally, A. P.
    Monge-Sanz, B. M.
    Morcrette, J. -J.
    Park, B. -K.
    Peubey, C.
    de Rosnay, P.
    Tavolato, C.
    Thepaut, J. -N.
    Vitart, F.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) : 553 - 597
  • [8] DEE DP, 1995, MON WEATHER REV, V123, P1128, DOI 10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO
  • [9] 2
  • [10] Diagnosis of observation, background and analysis-error statistics in observation space
    Desroziers, G.
    Berre, L.
    Chapnik, B.
    Poli, P.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) : 3385 - 3396