Dynamics and control of a turbocharged solid oxide fuel cell system

被引:26
|
作者
Mantelli, L. [1 ]
Ferrari, M. L. [1 ]
Traverso, A. [1 ]
机构
[1] Univ Genoa, Thermochem Power Grp TPG, DIME, Via Montallegro 1, I-16145 Genoa, Italy
关键词
SOFC; Turbocharger; Control system; Transient Analysis; Hydrogen; Dynamic Simulation; HYBRID SYSTEM; CONTROL STRATEGY; SOFC; POWER; OPTIMIZATION; PERFORMANCE; PROGRESS; DESIGN; BIOGAS; SIMULATION;
D O I
10.1016/j.applthermaleng.2021.116862
中图分类号
O414.1 [热力学];
学科分类号
摘要
The purpose of this paper regards the design and testing of control systems for a 30-kW turbocharged solid oxide fuel cell system fuelled with biogas. The adoption of a turbocharger, instead of a micro gas turbine, for the fuel cell stack pressurisation, is an innovative solution that is expected to decrease the capital cost of such systems and to facilitate their penetration into the energy market. However, not being connected to an electric generator, the turbocharger rotational speed, and thus the air mass flow, cannot be directly controlled as in microturbines. The control of turbocharged solid oxide fuel cell systems is a novel topic, characterised by many technical challenges that have not been addressed before. To regulate the stack temperature, a cold bypass valve is included, connecting the compressor outlet to the turbine inlet. A dynamic model of this system was developed in Matlab-Simulink (R) to analyse the response of the turbocharged solid oxide fuel cell system to a cold bypass valve opening step change. System information obtained from this analysis was used to design and tune four controllers: a conventional proportional integral controller and three different cascade controllers. The controller performance was evaluated under two different scenarios, considering quite aggressive power ramps. The best results were obtained with a cascade controller, where the feedback loop was complemented by a feed-forward contribution based on power demand. This analysis demonstrated that such a control system effectively tracks the fuel cell maximum temperature target, complying with all the system operative constraints.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Solid oxide fuel cell hybrid system: Control strategy for stand-alone configurations
    Ferrari, Mario L.
    JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2682 - 2690
  • [32] Effect of gasified biomass fuel on load characteristics of an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system
    Lv, Xiaojing
    Gu, Chenghong
    Liu, Xing
    Weng, Yiwu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (22) : 9563 - 9576
  • [33] A thermodynamic comparison of solid oxide fuel cell-combined cycles
    van Biert, L.
    Woudstra, T.
    Godjevac, M.
    Visser, K.
    Aravind, P. V.
    JOURNAL OF POWER SOURCES, 2018, 397 : 382 - 396
  • [34] Development of a highly efficient solid oxide fuel cell system
    Lee, Kanghun
    Kang, Sanggyu
    Ahn, Kook-Young
    APPLIED ENERGY, 2017, 205 : 822 - 833
  • [35] Thermoelectrical-based fuel adaptability analysis of solid oxide fuel cell system and fuel conversion rate prediction
    Zhang, Haobo
    Qin, Hongchuan
    Zhao, Weiqi
    Jiang, Jianhua
    Li, Xi
    Li, Jian
    ENERGY CONVERSION AND MANAGEMENT, 2020, 222
  • [36] Design, Simulation and Control of a 100 MW-Class Solid Oxide Fuel Cell Gas Turbine Hybrid System
    Mueller, Fabian
    Tarroja, Brian
    Maclay, James
    Jabbari, Faryar
    Brouwer, Jacob
    Samuelsen, Scott
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2010, 7 (03): : 0310071 - 03100711
  • [37] Solid oxide fuel cell system for automobiles
    Qin, Xiangfu
    Cao, Junwen
    Geng, Ga
    Li, Yifeng
    Zheng, Yun
    Zhang, Wenqiang
    Yu, Bo
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2022,
  • [38] Solid oxide fuel cell-lithium battery hybrid power generation system energy management: A review
    Shen, Minghai
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (65) : 32974 - 32994
  • [39] Gas Recirculation at the Hydrogen Electrode of Solid Oxide Fuel Cell and Solid Oxide Electrolysis Cell Systems
    Henke, M.
    Hillius, S.
    Riedel, M.
    Kallo, J.
    Friedrich, K. A.
    FUEL CELLS, 2016, 16 (05) : 584 - 590
  • [40] Control structure design of a solid oxide fuel cell and a molten carbonate fuel cell integrated system: Top-down analysis
    Jienkulsawad, Prathak
    Skogestad, Sigurd
    Arpornwichanop, Amornchai
    ENERGY CONVERSION AND MANAGEMENT, 2017, 152 : 88 - 98