Dynamics and control of a turbocharged solid oxide fuel cell system

被引:26
|
作者
Mantelli, L. [1 ]
Ferrari, M. L. [1 ]
Traverso, A. [1 ]
机构
[1] Univ Genoa, Thermochem Power Grp TPG, DIME, Via Montallegro 1, I-16145 Genoa, Italy
关键词
SOFC; Turbocharger; Control system; Transient Analysis; Hydrogen; Dynamic Simulation; HYBRID SYSTEM; CONTROL STRATEGY; SOFC; POWER; OPTIMIZATION; PERFORMANCE; PROGRESS; DESIGN; BIOGAS; SIMULATION;
D O I
10.1016/j.applthermaleng.2021.116862
中图分类号
O414.1 [热力学];
学科分类号
摘要
The purpose of this paper regards the design and testing of control systems for a 30-kW turbocharged solid oxide fuel cell system fuelled with biogas. The adoption of a turbocharger, instead of a micro gas turbine, for the fuel cell stack pressurisation, is an innovative solution that is expected to decrease the capital cost of such systems and to facilitate their penetration into the energy market. However, not being connected to an electric generator, the turbocharger rotational speed, and thus the air mass flow, cannot be directly controlled as in microturbines. The control of turbocharged solid oxide fuel cell systems is a novel topic, characterised by many technical challenges that have not been addressed before. To regulate the stack temperature, a cold bypass valve is included, connecting the compressor outlet to the turbine inlet. A dynamic model of this system was developed in Matlab-Simulink (R) to analyse the response of the turbocharged solid oxide fuel cell system to a cold bypass valve opening step change. System information obtained from this analysis was used to design and tune four controllers: a conventional proportional integral controller and three different cascade controllers. The controller performance was evaluated under two different scenarios, considering quite aggressive power ramps. The best results were obtained with a cascade controller, where the feedback loop was complemented by a feed-forward contribution based on power demand. This analysis demonstrated that such a control system effectively tracks the fuel cell maximum temperature target, complying with all the system operative constraints.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimal robust control strategy of a solid oxide fuel cell system
    Wu, Xiaojuan
    Gao, Danhui
    JOURNAL OF POWER SOURCES, 2018, 374 : 225 - 236
  • [22] Modeling, Control, and Integration of a Portable Solid Oxide Fuel Cell System
    Adhikari, Puran
    Abdelrahman, Mohamed
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2012, 9 (01):
  • [23] Robust Control of Solid Oxide Fuel Cell Ultracapacitor Hybrid System
    Allag, Tahar
    Das, Tuhin
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2012, 20 (01) : 1 - 10
  • [24] Development of solid oxide fuel cell and battery hybrid power generation system
    Xu, Yuan-wu
    Wu, Xiao-long
    Zhong, Xiaobo
    Zhao, Dongqi
    Fu, Jun
    Jiang, Jianhua
    Deng, Zhonghua
    Fu, Xiaowei
    Li, Xi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (15) : 8899 - 8914
  • [25] Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine
    Rokni, Masoud
    ENERGY, 2014, 76 : 19 - 31
  • [26] Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy
    Damo, U. M.
    Ferrari, M. L.
    Turan, A.
    Massardo, A. F.
    ENERGY, 2019, 168 : 235 - 246
  • [27] Analysis of total energy system based on solid oxide fuel cell for combined cooling and power applications
    Yu, Zeting
    Han, Jitian
    Cao, Xianqi
    Chen, Wei
    Zhang, Bin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (07) : 2703 - 2707
  • [28] Temperature Control of an Energy Integrated Solid Oxide Fuel Cell System
    Srisiriwat, Nawadee
    Wutthithanyawat, Chananchai
    PROCEEDINGS OF 2017 8TH INTERNATIONAL CONFERENCE ON MECHANICAL AND INTELLIGENT MANUFACTURING TECHNOLOGIES (ICMIMT), 2017, : 60 - 64
  • [29] Parametric analysis of solid oxide fuel cell
    Bo, Chong
    Yuan, Chun
    Zhao, Xiang
    Wu, Cai-Bao
    Li, Mao-Qing
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2009, 11 (04) : 391 - 399
  • [30] Improving the load-following capability of a solid oxide fuel cell system through the use of time delay control
    Yang, Jie
    Qin, Sen
    Zhang, Wenying
    Ding, Tengfei
    Zhou, Bo
    Li, Xi
    Jian, Li
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (02) : 1221 - 1236