Approximating L2 invariants of amenable covering spaces:: A combinatorial approach

被引:25
作者
Dodziuk, J [1 ]
Mathai, V
机构
[1] CUNY, Dept Math, New York, NY 10021 USA
[2] Univ Adelaide, Dept Math, Adelaide, SA 5005, Australia
关键词
L-2 Betti numbers; approximation theorems; amenable groups; von Neumann algebras; determinant;
D O I
10.1006/jfan.1997.3205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that the L-2 Betti numbers of an amenable covering space can be approximated by the average Betti numbers of a regular exhaustion, proving a conjecture in [DM]. We also prove that an arbitrary amenable covering space of a finite simplicial complex is of determinant class. (C) 1998 Academic Press.
引用
收藏
页码:359 / 378
页数:20
相关论文
共 20 条
[1]   A NOTE ON THE FOLNER CONDITION FOR AMENABILITY [J].
ADACHI, T .
NAGOYA MATHEMATICAL JOURNAL, 1993, 131 :67-74
[2]  
[Anonymous], 1988, PITMAN RES NOTES MAT
[3]  
Atiyah M.F., 1976, ASTERISQUE, V32-33, P43
[4]   Analytic and Reidemeister torsion for representations in finite type Hilbert modules [J].
Burghelea, D ;
Friedlander, L ;
Kappeler, T ;
McDonald, P .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (05) :751-859
[5]  
BURGHELEA D, 1966, TORSION MANIFOLDS BO
[6]  
CAREY AL, 1997, CRELLE J, V484, P153
[7]   L2-COHOMOLOGY AND GROUP COHOMOLOGY [J].
CHEEGER, J ;
GROMOV, M .
TOPOLOGY, 1986, 25 (02) :189-215
[8]  
DIXMIER J, 1981, VON NEUMANN ALGEBRAS, V27
[9]   DE RHAM-HODGE THEORY FOR L2-COHOMOLOGY OF INFINITE COVERINGS [J].
DODZIUK, J .
TOPOLOGY, 1977, 16 (02) :157-165
[10]  
DODZIUK J, 1997, CONT MATH, V211, P151