The Land Variational Ensemble Data Assimilation Framework: LAVENDAR v1.0.0

被引:21
作者
Pinnington, Ewan [1 ]
Quaife, Tristan [1 ,2 ]
Lawless, Amos [1 ,2 ]
Williams, Karina [3 ]
Arkebauer, Tim [4 ]
Scoby, Dave [4 ]
机构
[1] Univ Reading, Dept Meteorol, Natl Ctr Earth Observat, Reading, Berks, England
[2] Univ Reading, Sch Math Phys & Computat Sci, Reading, Berks, England
[3] Met Off, Hadley Ctr, Exeter, Devon, England
[4] Univ Nebraska, Dept Agron & Hort, Lincoln, NE USA
基金
英国自然环境研究理事会;
关键词
ENVIRONMENT SIMULATOR JULES; GROSS PRIMARY PRODUCTION; MODEL-DATA FUSION; SOIL-MOISTURE; CARBON DYNAMICS; UNCERTAINTY ANALYSIS; ECOSYSTEM MODEL; MAIZE; EXCHANGE; ERROR;
D O I
10.5194/gmd-13-55-2020
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Land Variational Ensemble Data Assimilation Framework (LAVENDAR) implements the method of four-dimensional ensemble variational (4D-En-Var) data assimilation (DA) for land surface models. Four-dimensional ensemble variational data assimilation negates the often costly calculation of a model adjoint required by traditional variational techniques (such as 4D-Var) for optimizing parameters or state variables over a time window of observations. In this paper we present the first application of LAVENDAR, implementing the framework with the Joint UK Land Environment Simulator (JULES) land surface model. We show that the system can recover seven parameters controlling crop behaviour in a set of twin experiments. We run the same experiments at the Mead continuous maize FLUXNET site in Nebraska, USA, to show the technique working with real data. We find that the system accurately captures observations of leaf area index, canopy height and gross primary productivity after assimilation and improves posterior estimates of the amount of harvestable material from the maize crop by 74 %. LAVENDAR requires no modification to the model that it is being used with and is hence able to keep up to date with model releases more easily than other DA methods.
引用
收藏
页码:55 / 69
页数:15
相关论文
共 57 条
[1]  
Anderson JL, 1999, MON WEATHER REV, V127, P2741, DOI 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO
[2]  
2
[3]   Joint assimilation of eddy covariance flux measurements and FAPAR products over temperate forests within a process-oriented biosphere model [J].
Bacour, C. ;
Peylin, P. ;
MacBean, N. ;
Rayner, P. J. ;
Delage, F. ;
Chevallier, F. ;
Weiss, M. ;
Demarty, J. ;
Santaren, D. ;
Baret, F. ;
Berveiller, D. ;
Dufrene, E. ;
Prunet, P. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2015, 120 (09) :1839-1857
[4]   A review of operational methods of variational and ensemble-variational data assimilation [J].
Bannister, R. N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2017, 143 (703) :607-633
[5]   The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes [J].
Best, M. J. ;
Pryor, M. ;
Clark, D. B. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Menard, C. B. ;
Edwards, J. M. ;
Hendry, M. A. ;
Porson, A. ;
Gedney, N. ;
Mercado, L. M. ;
Sitch, S. ;
Blyth, E. ;
Boucher, O. ;
Cox, P. M. ;
Grimmond, C. S. B. ;
Harding, R. J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :677-699
[6]   Constraining ecosystem carbon dynamics in a data-limited world: integrating ecological "common sense" in a model-data fusion framework [J].
Bloom, A. A. ;
Williams, M. .
BIOGEOSCIENCES, 2015, 12 (05) :1299-1315
[7]   The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times [J].
Bloom, A. Anthony ;
Exbrayat, Jean-Francois ;
van der Velde, Ivar R. ;
Feng, Liang ;
Williams, Mathew .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (05) :1285-1290
[8]   Localization and the iterative ensemble Kalman smoother [J].
Bocquet, M. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2016, 142 (695) :1075-1089
[9]   An iterative ensemble Kalman smoother [J].
Bocquet, M. ;
Sakov, P. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2014, 140 (682) :1521-1535
[10]   Joint state and parameter estimation with an iterative ensemble Kalman smoother [J].
Bocquet, M. ;
Sakov, P. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2013, 20 (05) :803-818