New High-Confinement Regime with Fast Ions in the Core of Fusion Plasmas

被引:45
|
作者
Di Siena, A. [1 ]
Bilato, R. [2 ]
Goerler, T. [2 ]
Navarro, A. Banon [2 ]
Poli, E. [2 ]
Bobkov, V [2 ]
Jarema, D. [2 ]
Fable, E. [2 ]
Angioni, C. [2 ]
Kazakov, Ye O. [3 ]
Ochoukov, R. [2 ]
Schneider, P. [2 ]
Weiland, M. [2 ]
Jenko, F. [2 ]
机构
[1] Univ Texas Austin, 201 E 24th St, Austin, TX 78712 USA
[2] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[3] TEC Partner, Lab Plasma Phys, LPP ERM KMS, B-1000 Brussels, Belgium
关键词
INTERNAL TRANSPORT BARRIER; MAGNETIC SHEAR; ASDEX UPGRADE; TURBULENCE; ELECTRON; SUPPRESSION; DISCHARGES; OPERATION;
D O I
10.1103/PhysRevLett.127.025002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The key result of the present work is the theoretical prediction and observation of the formation of a new type of transport barrier in fusion plasmas, called F-ATB (fast ion-induced anomalous transport barrier). As demonstrated through state-of-the-art global electrostatic and electromagnetic simulations, the F-ATB is characterized by a full suppression of the turbulent transport-caused by strongly sheared, axisymmetric E x B flows-and an increase of the neoclassical counterpart, albeit keeping the overall fluxes at significantly reduced levels. The trigger mechanism is shown to be a mainly electrostatic resonant interaction between suprathermal particles, generated via ion-cyclotron-resonance heating, and plasma microturbulcncc. These findings are obtained by realistic simulations of the ASDEX Upgrade discharge No. 36637-properly designed to maximized the beneficial role of the wave-particle resonance interaction-which exhibits the expected properties of improved confinement produced by energetic particles.
引用
收藏
页数:6
相关论文
共 14 条
  • [1] A high-density and high-confinement tokamak plasma regime for fusion energy
    Ding, S.
    Garofalo, A. M.
    Wang, H. Q.
    Weisberg, D. B.
    Li, Z. Y.
    Jian, X.
    Eldon, D.
    Victor, B. S.
    Marinoni, A.
    Hu, Q. M.
    Carvalho, I. S.
    Odstrcil, T.
    Wang, L.
    Hyatt, A. W.
    Osborne, T. H.
    Gong, X. Z.
    Qian, J. P.
    Huang, J.
    McClenaghan, J.
    Holcomb, C. T.
    Hanson, J. M.
    NATURE, 2024, 629 (8011) : 555 - +
  • [2] How fast ions mitigate turbulence and enhance confinement in tokamak fusion plasmas
    Na, Yong-Su
    Hahm, T. S.
    Diamond, P. H.
    Di Siena, A.
    Garcia, J.
    Lin, Z.
    NATURE REVIEWS PHYSICS, 2025, : 190 - 202
  • [3] Turbulence stabilization in tokamak plasmas with high population of fast ions
    Kim, D.
    Park, S. J.
    Choi, G. J.
    Cho, Y. W.
    Kang, J.
    Han, H.
    Candy, J.
    Belli, E. A.
    Hahm, T. S.
    Na, Y. -S
    Sung, C.
    NUCLEAR FUSION, 2023, 63 (12)
  • [4] Integration of full divertor detachment with improved core confinement for tokamak fusion plasmas
    Wang, L.
    Wang, H. Q.
    Ding, S.
    Garofalo, A. M.
    Gong, X. Z.
    Eldon, D.
    Guo, H. Y.
    Leonard, A. W.
    Hyatt, A. W.
    Qian, J. P.
    Weisberg, D. B.
    McClenaghan, J.
    Fenstermacher, M. E.
    Lasnier, C. J.
    Watkins, J. G.
    Shafer, M. W.
    Xu, G. S.
    Huang, J.
    Ren, Q. L.
    Buttery, R. J.
    Humphreys, D. A.
    Thomas, D. M.
    Zhang, B.
    Liu, J. B.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] Parallel flow driven instability due to toroidal return flow in high-confinement mode plasmas
    Sasaki, M.
    Itoh, K.
    Kosuga, Y.
    Dong, J. Q.
    Inagaki, S.
    Kobayashi, T.
    Cheng, J.
    Zhao, K. J.
    Itch, S-I
    NUCLEAR FUSION, 2019, 59 (06)
  • [6] A long-pulse high-confinement plasma regime in the Experimental Advanced Superconducting Tokamak
    Li, J.
    Guo, H. Y.
    Wan, B. N.
    Gong, X. Z.
    Liang, Y. F.
    Xu, G. S.
    Gan, K. F.
    Hu, J. S.
    Wang, H. Q.
    Wang, L.
    Zeng, L.
    Zhao, Y. P.
    Denner, P.
    Jackson, G. L.
    Loarte, A.
    Maingi, R.
    Menard, J. E.
    Rack, M.
    Zou, X. L.
    NATURE PHYSICS, 2013, 9 (12) : 817 - 821
  • [7] Observation of fully detached divertor integrated with improved core confinement for tokamak fusion plasmas
    Wang, H. Q.
    Wang, L.
    Ding, S.
    Garofalo, A. M.
    Gong, X. Z.
    Eldon, D.
    Guo, H. Y.
    Leonard, A. W.
    Hyatt, A. W.
    Qian, J. P.
    Weisberg, D. B.
    McClenaghan, J.
    Fenstermacher, M. E.
    Osborne, T. H.
    Lasnier, C. J.
    Watkins, J. G.
    Shafer, M. W.
    Grierson, B. A.
    Xu, G. S.
    Yan, Z.
    Mckee, G. R.
    Huang, J.
    Ren, J.
    Buttery, R. J.
    Humphreys, D. A.
    Thomas, D. M.
    Zhang, B.
    Liu, J. B.
    PHYSICS OF PLASMAS, 2021, 28 (05)
  • [8] A sustained high-temperature fusion plasma regime facilitated by fast ions
    Han, H.
    Park, S. J.
    Sung, C.
    Kang, J.
    Lee, Y. H.
    Chung, J.
    Hahm, T. S.
    Kim, B.
    Park, J-K
    Bak, J. G.
    Cha, M. S.
    Choi, G. J.
    Choi, M. J.
    Gwak, J.
    Hahn, S. H.
    Jang, J.
    Lee, K. C.
    Kim, J. H.
    Kim, S. K.
    Kim, W. C.
    Ko, J.
    Ko, W. H.
    Lee, C. Y.
    Lee, J. H.
    Lee, J. K.
    Lee, J. P.
    Lee, K. D.
    Park, Y. S.
    Seo, J.
    Yang, S. M.
    Yoon, S. W.
    Na, Y-S
    NATURE, 2022, 609 (7926) : 269 - +
  • [9] Robustness of predator-prey models for confinement regime transitions in fusion plasmas
    Zhu, H.
    Chapman, S. C.
    Dendy, R. O.
    PHYSICS OF PLASMAS, 2013, 20 (04)
  • [10] Real-time confinement regime detection in fusion plasmas with convolutional neural networks and high-bandwidth edge fluctuation measurements
    Gill, K.
    Smith, D.
    Joung, S.
    Geiger, B.
    McKee, G.
    Zimmerman, J.
    Coffee, R.
    Jalalvand, A.
    Kolemen, E.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):