A Fast Symmetric Alternating Direction Method of Multipliers

被引:5
作者
Luo, Gang [1 ,2 ]
Yang, Qingzhi [1 ,2 ,3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Kashi Univ, Sch Math & Stat, Kashi 844006, Peoples R China
来源
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS | 2020年 / 13卷 / 01期
基金
中国国家自然科学基金;
关键词
Nesterov's accelerating strategy; alternating direction method of multipliers; symmetric ADMM; separable linear constrained optimization; RACHFORD SPLITTING METHOD; DECOMPOSITION; SHRINKAGE; ALGORITHM; SELECTION; PENALTY;
D O I
10.4208/nmtma.OA-2018-0108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In recent years, alternating direction method of multipliers (ADMM) and its variants are popular for the extensive use in image processing and statistical learning. A variant of ADMM: symmetric ADMM, which updates the Lagrange multiplier twice in one iteration, is always faster whenever it converges. In this paper, combined with Nesterov's accelerating strategy, an accelerated symmetric ADMM is proposed. We prove its O(1/K-2) convergence rate under strongly convex condition. For the general situation, an accelerated method with a restart rule is proposed. Some preliminary numerical experiments show the efficiency of our algorithms.
引用
收藏
页码:200 / 219
页数:20
相关论文
共 26 条
  • [1] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
    Beck, Amir
    Teboulle, Marc
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01): : 183 - 202
  • [2] Boyd S, 2011, TRENDS MACH LEARN, V3, P1, DOI DOI 10.1561/2200000016
  • [3] A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
    Chambolle, Antonin
    Pock, Thomas
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (01) : 120 - 145
  • [4] The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent
    Chen, Caihua
    He, Bingsheng
    Ye, Yinyu
    Yuan, Xiaoming
    [J]. MATHEMATICAL PROGRAMMING, 2016, 155 (1-2) : 57 - 79
  • [5] Douglas J., 1956, Transactions of the American Mathematical Society, V82, P421, DOI [DOI 10.2307/1993056, DOI 10.1090/S0002-9947-1956-0084194-4]
  • [6] ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS
    ECKSTEIN, J
    BERTSEKAS, DP
    [J]. MATHEMATICAL PROGRAMMING, 1992, 55 (03) : 293 - 318
  • [7] PARALLEL ALTERNATING DIRECTION MULTIPLIER DECOMPOSITION OF CONVEX-PROGRAMS
    ECKSTEIN, J
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 80 (01) : 39 - 62
  • [8] Eckstein J., 1998, INFORMS Journal on Computing, V10, P218, DOI 10.1287/ijoc.10.2.218
  • [9] GLOWINSKI R, 1975, REV FR AUTOMAT INFOR, V9, P41
  • [10] Fast alternating linearization methods for minimizing the sum of two convex functions
    Goldfarb, Donald
    Ma, Shiqian
    Scheinberg, Katya
    [J]. MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 349 - 382