Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays

被引:45
作者
Huh, Yun Suk [1 ]
Erickson, David [1 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
SERS-active substrate; Nanotube array; Optofluidic device; Aptamer; Vasopressin; SERS SUBSTRATE; SPECTROSCOPY; NANOSTRUCTURES; NANOPARTICLES; STRATEGIES; METAL;
D O I
10.1016/j.bios.2009.09.040
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Here we present an optofluidic surface enhanced Raman spectroscopy (SERS) device for on-chip detection of vasopressin using an aptamer based binding assay. To create the SERS-active substrate, densely packed, 200 nm diameter, metal nanotube arrays were fabricated using an anodized alumina nanoporous membrane as a template for shadow evaporation. We explore the use of both single layer Au structures and multilayer Au/Ag/Au structures and also demonstrate a facile technique for integrating the membranes with all polydimethylsiloxane (PDMS) microfluidic devices. Using the integrated device, we demonstrate a linear response in the main detection peak intensity to solution phase concentration and a limit of detection on the order of 5.2 mu U/mL This low limit of detection is obtained with device containing the multilayer SERS substrate which we show exhibits a stronger Raman enhancement while maintaining biocompatibility and ease or surface reactivity with the capture probe. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1240 / 1243
页数:4
相关论文
共 44 条
[1]   Fabrication and characterization of a multiwell array SERS chip with biological applications [J].
Abell, J. L. ;
Driskell, J. D. ;
Dluhy, R. A. ;
Tripp, R. A. ;
Zhao, Y. -P. .
BIOSENSORS & BIOELECTRONICS, 2009, 24 (12) :3663-3670
[2]   Optical properties of gold nanorings -: art. no. 057401 [J].
Aizpurua, J ;
Hanarp, P ;
Sutherland, DS ;
Käll, M ;
Bryant, GW ;
de Abajo, FJG .
PHYSICAL REVIEW LETTERS, 2003, 90 (05) :4
[3]   Interleukin-6 Gene Knockout Influences Energy Balance Regulating Peptides in the Hypothalamic Paraventricular and Supraoptic Nuclei [J].
Benrick, A. ;
Schele, E. ;
Pinnock, S. B. ;
Wernstedt-Asterholm, I. ;
Dickson, S. L. ;
Karlsson-Lindahl, L. ;
Jansson, J. -O. .
JOURNAL OF NEUROENDOCRINOLOGY, 2009, 21 (07) :620-628
[4]   Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films [J].
Braun, Gary ;
Lee, Seung Joon ;
Dante, Mark ;
Nguyen, Thuc-Quyen ;
Moskovits, Martin ;
Reich, Norbert .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (20) :6378-+
[5]   Nanohole-enhanced Raman scattering [J].
Brolo, AG ;
Arctander, E ;
Gordon, R ;
Leathem, B ;
Kavanagh, KL .
NANO LETTERS, 2004, 4 (10) :2015-2018
[6]   Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips [J].
Chen, Lingxin ;
Choo, Jaebum .
ELECTROPHORESIS, 2008, 29 (09) :1815-1828
[7]   Nanofluidic biosensing for β-amyloid detection using surface enhanced Raman spectroscopy [J].
Chou, I-Hsien ;
Benford, Melodie ;
Beier, Hope T. ;
Cote, Gerard L. ;
Wang, Miao ;
Jing, Nan ;
Kameoka, Jun ;
Good, Theresa A. .
NANO LETTERS, 2008, 8 (06) :1729-1735
[8]   Intracytoplasmic delivery of anionic proteins [J].
Dalkara, D ;
Zuber, G ;
Behr, JP .
MOLECULAR THERAPY, 2004, 9 (06) :964-969
[9]  
DANA C, 2008, CHEMPHYSCHEM, V9, P758
[10]   Nano-patterned SERS substrate: Application for protein analysis vs. temperature [J].
Das, Gobind ;
Mecarini, Federico ;
Gentile, Francesco ;
De Angelis, Francesco ;
Kumar, Mohan H. G. ;
Candeloro, Patrizio ;
Liberale, Carlo ;
Cuda, Giovanni ;
Di Fabrizio, Enzo .
BIOSENSORS & BIOELECTRONICS, 2009, 24 (06) :1693-1699