Lie symmetry analysis of time fractional Burgers equation, Korteweg-de Vries equation and generalized reaction-diffusion equation with delays

被引:10
作者
Yu, Jicheng [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Sci, Wuhan 430081, Hubei, Peoples R China
[2] Huangchuan 1 Senior High Sch, Huangchuan 465150, Henan, Peoples R China
关键词
Fractional Burgers equation; fractional Korteweg-de Vries equation; fractional reaction-diffusion equation; delay; Lie symmetry analysis; group-invariant solution; COMPLETE GROUP CLASSIFICATION; KLEIN-GORDON EQUATION; DIFFERENTIAL-EQUATIONS;
D O I
10.1142/S021988782250219X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, Lie symmetry analysis method is applied to time fractional Burgers equation, Korteweg-de Vries equation and generalized reaction-diffusion equation with delays, respectively. The Lie symmetries for fractional partial differential equations with delays (DFPDEs) are obtained, and the group classifications of the equations are established. The obtained group generators are used to reduce the DFPDEs to fractional ordinary differential equations with delays (DFODEs). Some exact solutions constructed for the DFODEs generate group-invariant solutions of the discussed DFPDEs.
引用
收藏
页数:20
相关论文
共 39 条
  • [1] [Anonymous], 2000, SYMMETRY METHODS DIF
  • [2] Chen YQ, 2001, IEEE DECIS CONTR P, P1421, DOI 10.1109/CDC.2001.981091
  • [3] Lie group classification of first-order delay ordinary differential equations
    Dorodnitsyn, Vladimir A.
    Kozlov, Roman
    Meleshko, Sergey, V
    Winternitz, Pavel
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (20)
  • [4] El Kinani E. H., 2015, International Journal of Modern Physics: Conference Series, V38, DOI 10.1142/S2010194515600757
  • [5] Lie symmetry analysis of fractional ordinary differential equation with neutral delay
    Feng, Yuqiang
    Yu, Jicheng
    [J]. AIMS MATHEMATICS, 2021, 6 (04): : 3592 - 3605
  • [6] Construction of exact solutions for fractional order differential equations by the invariant subspace method
    Gazizov, R. K.
    Kasatkin, A. A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) : 576 - 584
  • [7] Symmetry properties of fractional diffusion equations
    Gazizov, R. K.
    Kasatkin, A. A.
    Lukashchuk, S. Yu
    [J]. PHYSICA SCRIPTA, 2009, T136
  • [8] Hashemi MS, 2020, LIE SYMMETRY ANAL FR
  • [9] Heris MS., 2018, INT J APPL COMPUT MA, V4, P72, DOI DOI 10.1007/S40819-018-0493-Y
  • [10] Ibragimov N. H., 2000, CRC HDB LIE GROUP AN, V1