Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators

被引:222
作者
Singh, Vibhor [1 ]
Sengupta, Shamashis [1 ]
Solanki, Hari S. [1 ]
Dhall, Rohan [1 ]
Allain, Adrien [1 ]
Dhara, Sajal [1 ]
Pant, Prita [2 ]
Deshmukh, Mandar M. [1 ]
机构
[1] TIFR, Dept Condensed Matter Phys, Mumbai 400005, Maharashtra, India
[2] Indian Inst Technol, Dept Met Engn & Mat Sci, Mumbai 400076, Maharashtra, India
关键词
ELASTIC PROPERTIES; RESONANCES; TRANSPORT; GAS;
D O I
10.1088/0957-4484/21/16/165204
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300 and 30 K. We also study the dispersion, the variation of resonant frequency with DC gate voltage, of the electromechanical modes and find considerable tunability of resonant frequency, desirable for applications like mass sensing and RF signal processing at room temperature. With a lowering of temperature, we find that the positively dispersing electromechanical modes evolve into negatively dispersing ones. We quantitatively explain this crossover and discuss optimal electromechanical properties that are desirable for temperature-compensated sensors.
引用
收藏
页数:8
相关论文
共 48 条
  • [1] Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes
    Arroyo, M
    Belytschko, T
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (21) : 1 - 215505
  • [2] Continuum Elastic Modeling of Graphene Resonators
    Atalaya, Juan
    Isacsson, Andreas
    Kinaret, Jari M.
    [J]. NANO LETTERS, 2008, 8 (12) : 4196 - 4200
  • [3] Bao W., 2009, NAT NANOTECHNOL
  • [4] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [5] Temperature-dependent transport in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Hone, J.
    Stormer, H. L.
    Kim, P.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (09)
  • [6] Electromechanical resonators from graphene sheets
    Bunch, J. Scott
    van der Zande, Arend M.
    Verbridge, Scott S.
    Frank, Ian W.
    Tanenbaum, David M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. SCIENCE, 2007, 315 (5811) : 490 - 493
  • [7] Measurement of mechanical resonance and losses in nanometer scale silicon wires
    Carr, DW
    Evoy, S
    Sekaric, L
    Craighead, HG
    Parpia, JM
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (07) : 920 - 922
  • [8] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [9] Chen CY, 2009, NAT NANOTECHNOL, V4, P861, DOI [10.1038/NNANO.2009.267, 10.1038/nnano.2009.267]
  • [10] Atomic-Scale Mass Sensing Using Carbon Nanotube Resonators
    Chiu, Hsin-Ying
    Hung, Peter
    Postma, Henk W. Ch.
    Bockrath, Marc
    [J]. NANO LETTERS, 2008, 8 (12) : 4342 - 4346