Detection of Psychological Stress Using a Hyperspectral Imaging Technique

被引:54
作者
Chen, Tong [1 ]
Yuen, Peter [2 ]
Richardson, Mark [2 ]
Liu, Guangyuan [1 ]
She, Zhishun [3 ]
机构
[1] Southwest Univ, Sch Elect & Informat Engn, Chongqing 400715, Peoples R China
[2] Cranfield Univ, Dept Informat & Syst Engn, Swindon SN6 8LA, Wilts, England
[3] Glyndwr Univ, Sch Engn, Wrexham LL11 2AW, Wales
基金
中国国家自然科学基金;
关键词
Stress detection; hyperspectral imaging; remote sensing; tissue oxygen saturation; CORTISOL RESPONSES; FACIAL EXPRESSIONS; SALIVARY CORTISOL; RECOGNITION; FACE; OXYGENATION; ADRENALINE; NONCONTACT; SYSTEM;
D O I
10.1109/TAFFC.2014.2362513
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The detection of stress at early stages is beneficial to both individuals and communities. However, traditional stress detection methods that use physiological signals are contact-based and require sensors to be in contact with test subjects for measurement. In this paper, we present a method to detect psychological stress in a non-contact manner using a human physiological response. In particular, we utilize a hyperspectral imaging (HSI) technique to extract the tissue oxygen saturation (StO2) value as a physiological feature for stress detection. Our experimental results indicate that this new feature may be independent from perspiration and ambient temperature. Trier Social Stress Tests (TSSTs) on 21 volunteers demonstrated a significant difference (p < 0: 005) and a large practical discrimination (d = 1.37) between normalized baseline and stress StO2 levels. The accuracy for stress recognition from baseline using a binary classifier was 76.19 and 88.1 percent for the automatic and manual selections of the classifier threshold, respectively. These results suggest that the StO2 level could serve as a new modality to recognize stress at standoff distances.
引用
收藏
页码:391 / 405
页数:15
相关论文
共 50 条
[21]   Detection of Moisture Content in Lettuce Canopy Based on Hyperspectral Imaging Technique [J].
Li H. ;
Zhang K. ;
Chen C. ;
Zhang Z. ;
Liu Z. .
Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (02) :211-217and274
[22]   Detection of Pits in Olive Using Hyperspectral Imaging Data [J].
Nasr-Esfahani, Shirin ;
Muthukumar, Venkatesan ;
Regentova, Emma E. ;
Taghva, Kazem ;
Trabia, Mohamed B. .
IEEE ACCESS, 2022, 10 :58525-58536
[23]   Itchy Skin Region Detection using Hyperspectral Imaging [J].
Saleheen, Firdous ;
Oleksyuk, Vira ;
Won, Chang-Hee .
IMAGE SENSING TECHNOLOGIES: MATERIALS, DEVICES, SYSTEMS, AND APPLICATIONS V, 2018, 10656
[24]   Melanoma Detection Using Smartphone and Multimode Hyperspectral Imaging [J].
MacKinnon, Nicholas ;
Vasefi, Fartash ;
Booth, Nicholas ;
Farkas, Daniel L. .
IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES IX, 2016, 9711
[25]   Detection of Hawthorn Fruit Defects Using Hyperspectral Imaging [J].
Liu De-hua ;
Zhang Shu-juan ;
Wang Bin ;
Yu Ke-qiang ;
Zhao Yan-ru ;
He Yong .
SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35 (11) :3167-3171
[26]   Citrus black spot detection using hyperspectral imaging [J].
Kim, Daegwan ;
Burks, Thomas F. ;
Ritenour, Mark A. ;
Qin, Jianwei .
INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2014, 7 (06) :20-27
[27]   Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging [J].
Mo, Changyeun ;
Kim, Giyoung ;
Lim, Jongguk ;
Kim, Moon S. ;
Cho, Hyunjeong ;
Cho, Byoung-Kwan .
SENSORS, 2015, 15 (11) :29511-29534
[28]   Object Detection in Rural Areas using Hyperspectral Imaging [J].
Ozturk, Safak ;
Esin, Yunus Emre ;
Artan, Yusuf .
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXI, 2015, 9643
[29]   Damage Detection in Composite Materials Using Hyperspectral Imaging [J].
Dlugosz, Jan ;
Dao, Phong Ba ;
Staszewski, Wieslaw J. ;
Uhl, Tadeusz .
EUROPEAN WORKSHOP ON STRUCTURAL HEALTH MONITORING (EWSHM 2022), VOL 2, 2023, :463-473
[30]   Fraud detection in the fishing sector using hyperspectral imaging [J].
Esplandiu, Paula Luri ;
Marin-Mendez, Juan-Jesus ;
Alonso-Santamaria, Miriam ;
Remirez-Moreno, Berta ;
Saiz-Abajo, Maria-Jose .
JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2024, 32 (03) :69-80