Polymer Integrated Waveguide Optical Biosensor by Using Spectral Splitting Effect

被引:7
作者
Han, Xiaonan [1 ]
Han, Xiuyou [1 ]
Shao, Yuchen [1 ]
Wu, Zhenlin [1 ]
Liang, Yuxin [1 ,4 ]
Teng, Jie [2 ]
Bo, Shuhui [3 ]
Morthier, Geert [4 ]
Zhao, Mingshan [1 ]
机构
[1] Dalian Univ Technol, Sch Phys & Optelect Engn, Dalian 116024, Peoples R China
[2] China Elect Technol Grp Corp, 38 Res Inst, Hefei 230088, Peoples R China
[3] Chinese Acad Sci, Tech inst Phys & Chem, Beijing 100190, Peoples R China
[4] Univ Ghent, IMEC, Dept Informat Technol, Photonics Res Grp, B-9000 Ghent, Belgium
基金
中国国家自然科学基金; 对外科技合作项目(国际科技项目); 新加坡国家研究基金会;
关键词
Optical biosensor; integrated waveguide; spectral splitting; sensitivity; MACH-ZEHNDER INTERFEROMETER; CRITICAL SENSITIVITY; SENSOR; DEVICES; DESIGN;
D O I
10.1007/s13320-017-0395-3
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the different mode dispersion responses of the two-arm waveguides to the cladding refractive index change, the spectral splitting effect of the output interference spectrum is obtained, inducing a very high sensitivity. The influence of the different mode dispersions between the two-arm waveguides on the spectral splitting characteristic is analyzed. By choosing different lengths of the two unequal width sensing arms, the initial dip wavelength of the interference spectrum and the spectral splitting range can be controlled flexibly. The polymer waveguide optical biosensor is designed, and its sensing property is analyzed. The results show that the sensitivity of the polymer waveguide optical biosensor by using spectral splitting effect is as high as 104 nm/RIU, with an improvement of 2-3 orders of magnitude compared with the slot waveguide based microring biosensor.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 24 条
  • [1] [Anonymous], 2014, THESIS
  • [2] [Anonymous], 2014, ORM PROD MICR TECHN
  • [3] Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding
    Bruck, R.
    Melnika, E.
    Muellner, P.
    Hainberger, R.
    Laemmerhofer, M.
    [J]. BIOSENSORS & BIOELECTRONICS, 2011, 26 (09) : 3832 - 3837
  • [4] Integrated Photonic Nanofences: Combining Subwavelength Waveguides with an Enhanced Evanescent Field for Sensing Applications
    Cadarso, Victor J.
    Llobera, Andreu
    Puyol, Mar
    Schift, Helmut
    [J]. ACS NANO, 2016, 10 (01) : 778 - 785
  • [5] Prospects of optical biosensors for emerging label-free RNA analysis
    Carrascosa, Laura G.
    Huertas, Cesar S.
    Lechuga, Laura M.
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2016, 80 : 177 - 189
  • [6] Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors
    Daghestani, Hikmat N.
    Day, Billy W.
    [J]. SENSORS, 2010, 10 (11) : 9630 - 9646
  • [7] All-optical phase modulation for integrated interferometric biosensors
    Dante, Stefania
    Duval, Daphne
    Sepulveda, Borja
    Belen Gonzalez-Guerrero, Ana
    Ramon Sendra, Jose
    Lechuga, Laura M.
    [J]. OPTICS EXPRESS, 2012, 20 (07): : 7195 - 7205
  • [8] Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response
    Densmore, A.
    Xu, D. -X.
    Janz, S.
    Waldron, P.
    Mischki, T.
    Lopinski, G.
    Delage, A.
    Lapointe, J.
    Cheben, P.
    Lamontagne, B.
    Schmid, J. H.
    [J]. OPTICS LETTERS, 2008, 33 (06) : 596 - 598
  • [9] Sensitive optical biosensors for unlabeled targets: A review
    Fan, Xudong
    White, Ian M.
    Shopova, Siyka I.
    Zhu, Hongying
    Suter, Jonathan D.
    Sun, Yuze
    [J]. ANALYTICA CHIMICA ACTA, 2008, 620 (1-2) : 8 - 26
  • [10] Han X. N., 2016, ACTA OPTICAL SINICA, V38