Structural and electrochemical properties of the doped spinels Li1.05M0.02Mn1.98O3.98N0.02 (M = Ga3+, Al3+, or Co3+; N = S2- or F-) for use as cathode material in lithium batteries

被引:48
作者
Amaral, Fabio A. [1 ]
Bocchi, Nerilso [1 ]
Brocenschi, Ricardo F. [1 ]
Biaggio, Sonia R. [1 ]
Rocha-Filho, Romeu C. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Quim, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Doped-manganese spinels; Cationic and anionic doping; Mechanical milling; Lithium-ion battery; Cathode material; MECHANOCHEMICAL SYNTHESIS; MANGANESE-DIOXIDE; CYCLING BEHAVIOR; ION BATTERIES; LIMN2O4; LI; PERFORMANCE; OXIDE; CAPACITY; DEGRADATION;
D O I
10.1016/j.jpowsour.2009.12.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The doped and milled spinels Li1.05M0.02Mn1.98O3.98N0.02 (M = Ga3+, Al3+ or Co3+; N = S2- or F-) are studied aiming at obtaining an improved charge/discharge cycling performance. These spinels are prepared by a solid-state reaction among the precursors epsilon-MnO2, LiOH, and the respective oxide/salt of the doping ions at 750 degrees C for 72 h and milled for 30 min. The obtained spinels are characterized by XRD, SEM, and determinations of the average manganese valence n. In the charge and discharge tests, the doped spinels present outstanding initial values of the specific discharge capacity C(117-126 mA h g(-1)), decreasing in the following order: C(Li1.05Al0.02Mn1.98S3.02O3.98) > C(Li1.05Al0.02Mn1.98F3.02O3.98) > C(Li1.05Ga0.02Mn1.98 S3.02O3.98) > C(Li1.05Ga0.02Mn1.98F3.02O3.98) > C(Li1.05Co0.02Mn1.98S3.02O3.98) > C(Li1.05Co0.02Mn1.98F3.02O3.98). The doped spinel Li1.05Ga0.02Mn1.98S3.02O3.98 presents an excellent electrochemical performance, with a low capacity loss even after 300 charge and discharge cycles (from 120 to 115 mA hg(-1) or 4%). (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3293 / 3299
页数:7
相关论文
共 78 条
[1]   Electrochemical and physical properties of poly(acrylonitrile)/poly(vinyl acetate)-based gel electrolytes for lithium ion batteries [J].
Amaral, Fabio A. ;
Dalmolin, Carla ;
Canobre, Sheila C. ;
Bocchi, Nerilso ;
Rocha Filho, Romeu C. ;
Biaggio, Sonia R. .
JOURNAL OF POWER SOURCES, 2007, 164 (01) :379-385
[2]   Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution [J].
Amatucci, GG ;
Pereira, N ;
Zheng, T ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (02) :A171-A182
[3]  
AMMUNDSEN B, 2009, LITHIUM BATTERIES SC, P361
[4]   Electrochemical investigations of cobalt-doped LiMn2O4 as cathode material for lithium-ion batteries [J].
Arora, P ;
Popov, BN ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (03) :807-815
[5]   Lithium insertion into host materials: the key to success for Li ion batteries [J].
Broussely, M ;
Biensan, P ;
Simon, B .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :3-22
[6]   Development of composites based on lithium manganese nickel oxide and electroactive polymers [J].
Canobre, Sheila C. ;
Montanhez, Livia ;
Fonseca, Carla Polo ;
Neves, Silmara .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 114 (01) :350-355
[7]  
Cho J, 1999, J ELECTROCHEM SOC, V146, P3577, DOI 10.1149/1.1392517
[8]   The effect of multivalent cation dopants on lithium manganese spinel cathodes [J].
de Kock, A ;
Ferg, E ;
Gummow, RJ .
JOURNAL OF POWER SOURCES, 1998, 70 (02) :247-252
[9]  
DELMAS G, 1999, INT J INORG MATER, V1, P315
[10]   Characterization and electrochemical performance of the spinel LiMn2O4 prepared from ε-MnO2 [J].
Ferracin, LC ;
Amaral, FA ;
Bocchi, N .
SOLID STATE IONICS, 2000, 130 (3-4) :215-220