Holomorphic bundles and the moduli space of N=1 supersymmetric heterotic compactifications

被引:54
作者
de la Ossa, Xenia [1 ]
Svanes, Eirik E. [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2014年 / 10期
基金
英国工程与自然科学研究理事会;
关键词
Superstrings and Heterotic Strings; Flux compactifications; Supersymmetric Effective Theories; YANG-MILLS CONNECTIONS; MANIFOLDS; TORSION; FLUX; SUPERSTRINGS; DEFORMATIONS; EXISTENCE; THEOREMS;
D O I
10.1007/JHEP10(2014)123
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We describe the first order moduli space of heterotic string theory compactifications which preserve N =1 supersymmetry in four dimensions, that is, the infinitesimal parameter space of the Strominger system. We establish that if we promote a connection on T X to a field, the moduli space corresponds to deformations of a holomorphic structure on a bundle . The bundle is constructed as an extension by the cotangent bundle T (au) X of the bundle E = End(V )aS center dot End(TX)aS center dot TX with an extension class which precisely enforces the anomaly cancelation condition. The deformations corresponding to the bundle E are simultaneous deformations of the holomorphic structures on the poly-stable bundles V and T X together with those of the complex structure of X. We discuss the fact that the "moduli" corresponding to End(T X) cannot be physical, but are however needed in our mathematical structure to be able to enforce the anomaly cancelation condition. In the appendix we comment on the choice of connection on T X which has caused some confusion in the community before. It has been shown by Ivanov and others that this connection should also satisfy the instanton equations, and we give another proof of this fact.
引用
收藏
页码:1 / 55
页数:55
相关论文
共 78 条
  • [21] Compactifications of heterotic strings on non-Kahler complex manifolds II
    Becker, K
    Becker, M
    Dasgupta, K
    Green, PS
    Sharpe, E
    [J]. NUCLEAR PHYSICS B, 2004, 678 (1-2) : 19 - 100
  • [22] Compactifications of heterotic theory on non-Kahler complex manifolds, I
    Becker, K
    Becker, M
    Dasgupta, K
    Green, PS
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2003, (04): : 83 - 142
  • [23] Properties of heterotic vacua from superpotentials
    Becker, K
    Becker, M
    Dasgupta, K
    Prokushkin, S
    [J]. NUCLEAR PHYSICS B, 2003, 666 (1-2) : 144 - 174
  • [24] Anomaly cancellation and smooth non-Kahler solutions in heterotic string theory
    Becker, Katrin
    Becker, Melanie
    Fu, Ji-Xiang
    Tseng, Li-Sheng
    Yau, Shing-Tung
    [J]. NUCLEAR PHYSICS B, 2006, 751 (1-2) : 108 - 128
  • [25] Torsional heterotic geometries
    Becker, Katrin
    Sethi, Savdeep
    [J]. NUCLEAR PHYSICS B, 2009, 820 (1-2) : 1 - 31
  • [26] Moduli space of torsional manifolds
    Becker, Melanie
    Tseng, Li-Sheng
    Yau, Shing-Tung
    [J]. NUCLEAR PHYSICS B, 2007, 786 (1-2) : 119 - 134
  • [27] SUPERSYMMETRIC CHERN-SIMONS TERMS IN 10 DIMENSIONS
    BERGSHOEFF, E
    DEROO, M
    [J]. PHYSICS LETTERS B, 1989, 218 (02) : 210 - 215
  • [28] THE QUARTIC EFFECTIVE ACTION OF THE HETEROTIC STRING AND SUPERSYMMETRY
    BERGSHOEFF, EA
    DEROO, M
    [J]. NUCLEAR PHYSICS B, 1989, 328 (02) : 439 - 468
  • [29] A LOCAL INDEX THEOREM FOR NON KAHLER-MANIFOLDS
    BISMUT, JM
    [J]. MATHEMATISCHE ANNALEN, 1989, 284 (04) : 681 - 699
  • [30] Green-Schwarz mechanism in heterotic (2,0) gauged linear sigma models: torsion and NS5 branes
    Blaszczyk, Michael
    Nibbelink, Stefan Groot
    Ruehle, Fabian
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (08):