Molecular dynamic study of MlaC protein in Gram-negative bacteria: conformational flexibility, solvent effect and protein-phospholipid binding

被引:24
作者
Huang, Yu-ming M. [1 ]
Miao, Yinglong [2 ]
Munguia, Jason [3 ]
Lin, Leo [3 ]
Nizet, Victor [3 ,4 ]
McCammon, J. Andrew [1 ,2 ,5 ]
机构
[1] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
关键词
Mla pathway; ABC transporter; phospholipid; molecular dynamics simulation; PARTICLE MESH EWALD; OUTER-MEMBRANE; DRUG DESIGN; AMBER; SIMULATIONS; SYSTEM; WATER;
D O I
10.1002/pro.2939
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The composition of the outer membrane in Gram-negative bacteria is asymmetric, with the lipopolysaccharides found in the outer leaflet and phospholipids in the inner leaflet. The MlaC protein transfers phospholipids from the outer to inner membrane to maintain such lipid asymmetry in the Mla pathway. In this work, we have performed molecular dynamics simulations on apo and phospholipid-bound systems to study the dynamical properties of MlaC. Our simulations show that the phospholipid forms hydrophobic interactions with the protein. Residues surrounding the entrance of the binding site exhibit correlated motions to control the site opening and closing. Lipid binding leads to increase of the binding pocket volume and precludes entry of the water molecules. However, in the absence of the phospholipid, water molecules can freely move in and out of the binding site when the pocket is open. Dehydration occurs when the pocket closes. This study provides dynamic information of the MlaC protein and may facilitate the design of antibiotics against the Mla pathway of Gram-negative bacteria.
引用
收藏
页码:1430 / 1437
页数:8
相关论文
共 23 条
[1]  
[Anonymous], PYMOL MOL GRAPH SYST
[2]  
Case D. A., 2015, AMBER
[3]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[4]   The Role of Water Molecules in Computational Drug Design [J].
de Beer, Stephanie B. A. ;
Vermeulen, Nico P. E. ;
Oostenbrink, Chris .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2010, 10 (01) :55-66
[5]   Lipid14: The Amber Lipid Force Field [J].
Dickson, Callum J. ;
Madej, Benjamin D. ;
Skjevik, Age A. ;
Betz, Robin M. ;
Teigen, Knut ;
Gould, Ian R. ;
Walker, Ross C. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (02) :865-879
[6]   POVME 2.0: An Enhanced Tool for Determining Pocket Shape and Volume Characteristics [J].
Durrant, Jacob D. ;
Votapka, Lane ;
Sorensen, Jesper ;
Amaro, Rommie E. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (11) :5047-5056
[7]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[8]   Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born [J].
Goetz, Andreas W. ;
Williamson, Mark J. ;
Xu, Dong ;
Poole, Duncan ;
Le Grand, Scott ;
Walker, Ross C. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (05) :1542-1555
[9]   VMD: Visual molecular dynamics [J].
Humphrey, W ;
Dalke, A ;
Schulten, K .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1996, 14 (01) :33-38
[10]   COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR SIMULATING LIQUID WATER [J].
JORGENSEN, WL ;
CHANDRASEKHAR, J ;
MADURA, JD ;
IMPEY, RW ;
KLEIN, ML .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (02) :926-935