Cluster ensemble Kalman filter

被引:40
作者
Smith, Keston W. [1 ]
机构
[1] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
基金
美国国家科学基金会;
关键词
D O I
10.1111/j.1600-0870.2007.00246.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A modified ensemble Kalman filter (KF) is proposed which can enhance performance for highly non-linear prognostic models. The algorithm differs from the traditional ensemble KF by the addition of an expectation maximization step, which estimates the parameters of a Gaussian mixture model for the ensemble of forecast states. The algorithm is tested in twin experiments using a simple phytoplankton-zooplankton model.
引用
收藏
页码:749 / 757
页数:9
相关论文
共 12 条
[1]   An Ensemble Kalman filter with a 1-D marine ecosystem model [J].
Eknes, M ;
Evensen, G .
JOURNAL OF MARINE SYSTEMS, 2002, 36 (1-2) :75-100
[3]  
Evensen G., 2006, DATA ASSIMILATION EN
[4]  
Evensen G., 2003, Ocean Dyn, V53, P343, DOI [DOI 10.1007/S10236-003-0036-9, 10.1007/s10236-003-0036-9]
[5]   Model-based clustering, discriminant analysis, and density estimation [J].
Fraley, C ;
Raftery, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) :611-631
[6]  
Hu X., 2004, NEURAL INFORM PROCES, V4, P1
[7]  
LORENZ EN, 1963, J ATMOS SCI, V20, P448, DOI 10.1175/1520-0469(1963)020<0448:TMOV>2.0.CO
[8]  
2
[9]   Data assimilation into nonlinear stochastic models [J].
Miller, RN ;
Carter, EF ;
Blue, ST .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1999, 51 (02) :167-194
[10]   THE ROLE OF PREDATION IN PLANKTON MODELS [J].
STEELE, JH ;
HENDERSON, EW .
JOURNAL OF PLANKTON RESEARCH, 1992, 14 (01) :157-172