The gut microbiome and type 2 diabetes status in the Multiethnic Cohort

被引:41
作者
Maskarinec, Gertraud [1 ]
Raquinio, Phyllis [1 ]
Kristal, Bruce S. [2 ,3 ]
Setiawan, Veronica W. [4 ]
Wilkens, Lynne R. [1 ]
Franke, Adrian A. [1 ]
Lim, Unhee [1 ]
Le Marchand, Loic [1 ]
Randolph, Timothy W. [5 ]
Lampe, Johanna W. [5 ]
Hullar, Meredith A. J. [5 ]
机构
[1] Univ Hawaii, Canc Ctr, Populat Sci Pacific, Honolulu, HI 96822 USA
[2] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Univ Southern Calif, Dept Prevent Med, Los Angeles, CA 90007 USA
[5] Fred Hutchinson Canc Res Ctr, Publ Hlth Sci Div, 1124 Columbia St, Seattle, WA 98104 USA
来源
PLOS ONE | 2021年 / 16卷 / 06期
关键词
DIET-QUALITY INDEXES; METFORMIN; RISK; COMMUNITIES; METAGENOME; BACTERIA; SEARCH;
D O I
10.1371/journal.pone.0250855
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background The gut microbiome may play a role in inflammation associated with type 2 diabetes (T2D) development. This cross-sectional study examined its relation with glycemic status within a subset of the Multiethnic Cohort (MEC) and estimated the association of circulating bacterial endotoxin (measured as plasma lipopolysaccharide-binding protein (LBP)) with T2D, which may be mediated by C-reactive protein (CRP). Methods In 2013-16, cohort members from five ethnic groups completed clinic visits, questionnaires, and stool and blood collections. Participants with self-reported T2D and/or taking medication were considered T2D cases. Those with fasting glucose >125 and 100-125 mg/dL were classified as undiagnosed (UT2D) and pre-diabetes (PT2D) cases, respectively. We characterized the gut microbiome through 16S rRNA gene sequencing and measured plasma LBP and CRP by standard assays. Linear regression was applied to estimate associations of the gut microbiome community structure and LBP with T2D status adjusting for relevant confounders. Results Among 1,702 participants (59.9-77.4 years), 735 (43%) were normoglycemic (NG), 506 (30%) PT2D, 154 (9%) UT2D, and 307 (18%) T2D. The Shannon diversity index decreased (p(trend) = 0.05), while endotoxin, measured as LBP, increased (p(trend) = 0.0003) from NG to T2D. Of 10 phyla, Actinobacteria (p(trend) = 0.007), Firmicutes (p(trend) = 0.003), and Synergistetes (p(trend) = 0.02) were inversely associated and Lentisphaerae (p(trend) = 0.01) was positively associated with T2D status. Clostridium sensu stricto 1, Lachnospira, and Peptostreptococcaceae were less, while Escherichia-Shigella and Lachnospiraceae were more abundant among T2D patients, but the associations with Actinobacteria, Clostridium sensu stricto 1, and Escherichia-Shigella may be due metformin use. PT2D/UT2D values were closer to NG than T2D. No indication was detected that CRP mediated the association of LBP with T2D. Conclusions T2D but not PT2D/UT2D status was associated with lower abundance of SCFA-producing genera and a higher abundance of gram-negative endotoxin-producing bacteria suggesting that the gut microbiome may contribute to chronic systemic inflammation and T2D through bacterial translocation.
引用
收藏
页数:15
相关论文
共 68 条
[1]   Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals [J].
Ahmad, Aftab ;
Yang, Wanwei ;
Chen, Guofang ;
Shafiq, Muhammad ;
Javed, Sundus ;
Zaidi, Syed Shujaat Ali ;
Shahid, Ramla ;
Liu, Chao ;
Bokhari, Habib .
PLOS ONE, 2019, 14 (12)
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]  
Amer Diabet Assoc, 2010, DIABETES CARE, V33, pS11, DOI [10.2337/dc10-S011, 10.2337/dc13-S011, 10.2337/dc13-S067, 10.2337/dc10-S062, 10.2337/dc12-s064, 10.2337/dc14-S081, 10.2337/dc11-S062, 10.2337/dc11-S011, 10.2337/dc12-s011]
[4]   Distance-based tests for homogeneity of multivariate dispersions [J].
Anderson, MJ .
BIOMETRICS, 2006, 62 (01) :245-253
[5]   Impact of the gut microbiota on inflammation, obesity, and metabolic disease [J].
Boulange, Claire L. ;
Neves, Ana Luisa ;
Chilloux, Julien ;
Nicholson, Jeremy K. ;
Dumas, Marc-Emmanuel .
GENOME MEDICINE, 2016, 8
[6]   The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities [J].
Brunkwall, Louise ;
Orho-Melander, Marju .
DIABETOLOGIA, 2017, 60 (06) :943-951
[7]   Metabolic endotoxemia initiates obesity and insulin resistance [J].
Cani, Patrice D. ;
Amar, Jacques ;
Iglesias, Miguel Angel ;
Poggi, Marjorie ;
Knauf, Claude ;
Bastelica, Delphine ;
Neyrinck, Audrey M. ;
Fava, Francesca ;
Tuohy, Kieran M. ;
Chabo, Chantal ;
Waget, Aurelie ;
Delmee, Evelyne ;
Cousin, Beatrice ;
Sulpice, Thierry ;
Chamontin, Bernard ;
Ferrieres, Jean ;
Tanti, Jean-Francois ;
Gibson, Glenn R. ;
Casteilla, Louis ;
Delzenne, Nathalie M. ;
Alessi, Marie Christine ;
Burcelin, Remy .
DIABETES, 2007, 56 (07) :1761-1772
[8]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[9]   PyNAST: a flexible tool for aligning sequences to a template alignment [J].
Caporaso, J. Gregory ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
DeSantis, Todd Z. ;
Andersen, Gary L. ;
Knight, Rob .
BIOINFORMATICS, 2010, 26 (02) :266-267
[10]   Diet and Gut Microbes Act Coordinately to Enhance Programmed Cell Death and Reduce Colorectal Cancer Risk [J].
Chapkin, Robert S. ;
Navarro, Sandi L. ;
Hullar, Meredith A. J. ;
Lampe, Johanna W. .
DIGESTIVE DISEASES AND SCIENCES, 2020, 65 (03) :840-851