The Iwasawa Main Conjectures for GL2 and derivatives of p-adic L-functions

被引:5
作者
Castella, Francesc [1 ]
Wan, Xin [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, 55 Zhongguancun East Rd, Beijing 100190, Peoples R China
基金
国家重点研发计划;
关键词
Iwasawa theory; p-adic families of modular forms; Selmer groups; Euler systems; p-adicL-functions; ABELIAN-VARIETIES; ELLIPTIC-CURVES; HEEGNER CYCLES; ZETA-FUNCTIONS; FAMILIES; BIRCH; REPRESENTATIONS; CONGRUENCE; CONVERSE; POINTS;
D O I
10.1016/j.aim.2022.108266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove under mild hypotheses the three-variable Iwasawa Main Conjecture for p-ordinary modular forms base changed to an imaginary quadratic field K in which p splits in the indefinite setting (in the definite setting this is a result due to Skinner-Urban). Being in a setting encompassing Heegner points and their variation in p-adic families, our main result has new applications to Greenberg's nonvanishing conjecture for central derivatives of p-adic L-functions of Hida families with root number -1. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:45
相关论文
共 68 条
[1]   Anticyclotomic Iwasawa theory of CM elliptic curves [J].
Agboola, Adebisi ;
Howard, Benjamin .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (04) :1001-1048
[2]   Anticyclotomic main conjectures for CM modular forms [J].
Arnold, Trevor .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 606 :41-78
[3]   HIDA FAMILIES, p-ADIC HEIGHTS, AND DERIVATIVES [J].
Arnold, Trevor .
ANNALES DE L INSTITUT FOURIER, 2010, 60 (06) :2275-2299
[4]  
Bertolini M., 2022, ADV MATH, V398
[5]   GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES [J].
Bertolini, Massimo ;
Darmon, Henri ;
Prasanna, Kartik .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) :1033-1148
[6]  
BERTRAND D, 1984, LECT NOTES MATH, V1068, P17
[7]  
Betina A., 2021, IN PRESS, DOI [10.1353/ajm.2022.0004, DOI 10.1353/AJM.2022.0004]
[8]   Shimura Curves and Special Values of p-adic L-functions [J].
Brooks, Ernest Hunter .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (12) :4177-4241
[9]   Big Heegner point Kolyvagin system for a family of modular forms [J].
Bueyuekboduk, Kazim .
SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (03) :787-815
[10]  
Burungale A., 2019, PREPRINT