Dispersive optical solitons by Kudryashov's method

被引:117
作者
Mirzazadeh, M. [1 ]
Eslami, M. [2 ]
Biswas, Anjan [3 ,4 ]
机构
[1] Univ Guilan, Fac Math Sci, Dept Math, Rasht, Iran
[2] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
[3] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[4] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
来源
OPTIK | 2014年 / 125卷 / 23期
关键词
Kudryashov's method; Solitons; Integrability; SOLITARY WAVE SOLUTIONS; 1-SOLITON SOLUTION; EQUATION;
D O I
10.1016/j.ijleo.2014.02.044
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper studies the dynamics of dispersive optical solitions that is modeled by the fourth order nonlinear Schrodinger's equation and Schrodinger-Hirota equation, the latter of which is considered with power law nonlinearity. Kudryashov's method is applied to obtain soliton solutions to the model equations. These results and the solution methodology makes a profound impact in the study of optical solitons. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:6874 / 6880
页数:7
相关论文
共 31 条
[1]  
Bang O., 1995, Applicable Analysis, V57, P3, DOI 10.1080/00036819508840335
[2]   Stochastic perturbation of optical solitons in Schrodinger-Hirota equation [J].
Biswas, A .
OPTICS COMMUNICATIONS, 2004, 239 (4-6) :461-466
[3]   Optical solitons: Quasi-stationarity versus Lie transform [J].
Biswas, A .
OPTICAL AND QUANTUM ELECTRONICS, 2003, 35 (10) :979-998
[4]  
Biswas A., 2012, Quantum Physics Letters, V1, P79
[5]   1-soliton solution of the K(m, n) equation with generalized evolution [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (25) :4601-4602
[6]   Optical solitons and complexitons of the Schrodinger-Hirota equation [J].
Biswas, Anjan ;
Jawad, Anwar Ja'afar Muhammad ;
Manrakhan, Wayne N. ;
Sarma, Amarendra K. ;
Khan, Kaisar R. .
OPTICS AND LASER TECHNOLOGY, 2012, 44 (07) :2265-2269
[7]   1-soliton solution of the K (m, n) equation with generalized evolution and time-dependent damping and dispersion [J].
Biswas, Anjan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) :2536-2540
[8]   Topological 1-soliton solution of the nonlinear Schrodinger's equation with Kerr law nonlinearity in 1+2 dimensions [J].
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (07) :2845-2847
[9]   Numerical study of nonlinear Schrodinger and coupled Schrodinger equations by differential transformation method [J].
Borhanifar, A. ;
Abazari, Reza .
OPTICS COMMUNICATIONS, 2010, 283 (10) :2026-2031