Validation of Machine Learning Models to Predict Adverse Outcomes in Patients with COVID-19: A Prospective Pilot Study

被引:4
作者
Kim, Hyung-Jun [1 ]
Heo, JoonNyung [2 ,3 ]
Han, Deokjae [4 ]
Oh, Hong Sang [5 ]
机构
[1] Seoul Natl Univ, Dept Internal Med, Div Pulm & Crit Care Med, Bundang Hosp, Seongnam, South Korea
[2] Yonsei Univ, Dept Neurol, Coll Med, Seoul, South Korea
[3] Armed Forces Med Command, Seongnam, South Korea
[4] Armed Forces Capital Hosp, Dept Internal Med, Div Pulm & Crit Care Med, Seongnam, South Korea
[5] Armed Forces Capital Hosp, Dept Internal Med, Div Infect Dis, 81 Saemaeul Ro 177Beon Gil, Seongnam 13574, South Korea
关键词
COVID-19; machine learning; validation study; prospective studies; prognosis;
D O I
10.3349/ymj.2022.63.5.422
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose: We previously developed learning models for predicting the need for intensive care and oxygen among patients with coronavirus disease (COVID-19). Here, we aimed to prospectively validate the accuracy of these models. Materials and Methods: Probabilities of the need for intensive care [intensive care unit (ICU) score] and oxygen (oxygen score) were calculated from information provided by hospitalized COVID-19 patients (n=44) via a web-based application. The performance of baseline scores to predict 30-day outcomes was assessed. Results: Among 44 patients, 5 and 15 patients needed intensive care and oxygen, respectively. The area under the curve of ICU score and oxygen score to predict 30-day outcomes were 0.774 [95% confidence interval (CI): 0.614-0.934] and 0.728 (95% CI: 0.559-0.898), respectively. The ICU scores of patients needing intensive care increased daily by 0.71 points (95% CI: 0.20-1.22) after hospitalization and by 0.85 points (95% CI: 0.36-1.35) after symptom onset, which were significantly different from those in individuals not needing intensive care (p=0.002 and <0.001, respectively). Trends in daily oxygen scores overall were not markedly different; however, when the scores were evaluated within <7 days after symptom onset, the patients needing oxygen showed a higher daily increase in oxygen scores [1.81 (95% CI: 0.48-3.14) vs. -0.28 (95% CI: 1.00-0.43), p=0.007]. Conclusion: Our machine learning models showed good performance for predicting the outcomes of COVID-19 patients and could thus be useful for patient triage and monitoring.
引用
收藏
页码:422 / 429
页数:8
相关论文
共 37 条
[31]   Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal [J].
Wynants, Laure ;
Van Calster, Ben ;
Collins, Gary S. ;
Riley, Richard D. ;
Heinze, Georg ;
Schuit, Ewoud ;
Albu, Elena ;
Arshi, Banafsheh ;
Bellou, Vanesa ;
Bonten, Marc M. J. ;
Dahly, Darren L. ;
Damen, Johanna A. ;
Debray, Thomas P. A. ;
de Jong, Valentijn M. T. ;
De Vos, Maarten ;
Dhiman, Paula ;
Ensor, Joie ;
Gao, Shan ;
Haller, Maria C. ;
Harhay, Michael O. ;
Henckaerts, Liesbet ;
Heus, Pauline ;
Hoogland, Jeroen ;
Hudda, Mohammed ;
Jenniskens, Kevin ;
Kammer, Michael ;
Kreuzberger, Nina ;
Lohmann, Anna ;
Levis, Brooke ;
Luijken, Kim ;
Ma, Jie ;
Martin, Glen P. ;
McLernon, David J. ;
Andaur Navarro, Constanza L. ;
Reitsma, Johannes B. ;
Sergeant, Jamie C. ;
Shi, Chunhu ;
Skoetz, Nicole ;
Smits, Luc J. M. ;
Snell, Kym I. E. ;
Sperrin, Matthew ;
Spijker, Rene ;
Steyerberg, Ewout W. ;
Takada, Toshihiko ;
Tzoulaki, Ioanna ;
van Kuijk, Sander M. J. ;
van Bussel, Bas C. T. ;
van der Horst, Iwan C. C. ;
Reeve, Kelly ;
van Royen, Florien S. .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 369
[32]   An interpretable mortality prediction model for COVID-19 patients [J].
Yan, Li ;
Zhang, Hai-Tao ;
Goncalves, Jorge ;
Xiao, Yang ;
Wang, Maolin ;
Guo, Yuqi ;
Sun, Chuan ;
Tang, Xiuchuan ;
Jing, Liang ;
Zhang, Mingyang ;
Huang, Xiang ;
Xiao, Ying ;
Cao, Haosen ;
Chen, Yanyan ;
Ren, Tongxin ;
Wang, Fang ;
Xiao, Yaru ;
Huang, Sufang ;
Tan, Xi ;
Huang, Niannian ;
Jiao, Bo ;
Cheng, Cheng ;
Zhang, Yong ;
Luo, Ailin ;
Mombaerts, Laurent ;
Jin, Junyang ;
Cao, Zhiguo ;
Li, Shusheng ;
Xu, Hui ;
Yuan, Ye .
NATURE MACHINE INTELLIGENCE, 2020, 2 (05) :283-+
[33]   Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study [J].
Yang, Xiaobo ;
Yu, Yuan ;
Xu, Jiqian ;
Shu, Huaqing ;
Xia, Jia'an ;
Liu, Hong ;
Wu, Yongran ;
Zhang, Lu ;
Yu, Zhui ;
Fang, Minghao ;
Yu, Ting ;
Wang, Yaxin ;
Pan, Shangwen ;
Zou, Xiaojing ;
Yuan, Shiying ;
Shang, You .
LANCET RESPIRATORY MEDICINE, 2020, 8 (05) :475-481
[34]   Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore [J].
Young, Barnaby Edward ;
Ong, Sean Wei Xiang ;
Kalimuddin, Shirin ;
Low, Jenny G. ;
Tan, Seow Yen ;
Loh, Jiashen ;
Ng, Oon-Tek ;
Marimuthu, Kalisvar ;
Ang, Li Wei ;
Mak, Tze Minn ;
Lau, Sok Kiang ;
Anderson, Danielle E. ;
Chan, Kian Sing ;
Tan, Thean Yen ;
Ng, Tong Yong ;
Cui, Lin ;
Said, Zubaidah ;
Kurupatham, Lalitha ;
Chen, Mark I-Cheng ;
Chan, Monica ;
Vasoo, Shawn ;
Wang, Lin-Fa ;
Tan, Boon Huan ;
Lin, Raymond Tzer Pin ;
Lee, Vernon Jian Ming ;
Leo, Yee-Sin ;
Lye, David Chien .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (15) :1488-1494
[35]   Wuhan and Hubei COVID-19 mortality analysis reveals the critical role of timely supply of medical resources [J].
Zhang, Zuqin ;
Yao, Wei ;
Wang, Yan ;
Long, Cheng ;
Fu, Xinmiao .
JOURNAL OF INFECTION, 2020, 81 (01) :170-172
[36]   Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study [J].
Zhou, Fei ;
Yu, Ting ;
Du, Ronghui ;
Fan, Guohui ;
Liu, Ying ;
Liu, Zhibo ;
Xiang, Jie ;
Wang, Yeming ;
Song, Bin ;
Gu, Xiaoying ;
Guan, Lulu ;
Wei, Yuan ;
Li, Hui ;
Wu, Xudong ;
Xu, Jiuyang ;
Tu, Shengjin ;
Zhang, Yi ;
Chen, Hua ;
Cao, Bin .
LANCET, 2020, 395 (10229) :1054-1062
[37]  
Zhu N, 2020, NEW ENGL J MED, V382, P727, DOI [10.1056/NEJMoa2001017, 10.1172/JCI89857]