Links and bifurcations in nonsingular Morse-Smale systems

被引:0
作者
Campos, B
Alfaro, JM
Vindel, P
机构
[1] Univ Jaume 1, Dept Matemat, E-12071 Castello, Spain
[2] Univ Valencia, Fac Matemat, Dept Matemat Aplicada, Burjassot, Valencia, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1997年 / 7卷 / 08期
关键词
D O I
10.1142/S0218127497001345
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Wada's theorem classifies the set of periodic orbits in NMS systems on S-3 as links, that can be written in terms of six operations. This characterization allows us to study the topological restrictions that links require to suffer a given codimension one bifurcation. Moreover, these results are reproduced in the case of NMS systems with rotational symmetries, introducing new geometrical tools.
引用
收藏
页码:1717 / 1736
页数:20
相关论文
共 24 条
[1]  
Birman J., 1983, Contemp. Math., V20, P1, DOI DOI 10.1090/CONM/020/718132
[2]   KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS [J].
BIRMAN, JS ;
WILLIAMS, RF .
TOPOLOGY, 1983, 22 (01) :47-82
[3]   TOPOLOGICAL METHODS IN SURFACE DYNAMICS [J].
BOYLAND, P .
TOPOLOGY AND ITS APPLICATIONS, 1994, 58 (03) :223-298
[4]   Bifurcations of links of periodic orbits in non-singular Morse-Smale systems on S-3 [J].
Campos, B ;
Alfaro, JM ;
Vindel, P .
NONLINEARITY, 1997, 10 (05) :1339-1355
[5]  
CAMPOS B, 1996, UNPUB BIFURCATIONS L
[6]  
CAMPOS B, 1997, KNOT THEORY ITS RAMI, V6, P163
[7]  
CAMPOS B, 1996, NEW TRENDS HAMILTONI
[8]  
CASASAYAS J, 1992, KNOTS LINKS INTEGRAB, V48
[9]  
Fomenko A. T., 1988, INTEGRABILITY NONINT
[10]  
FOMENKO AT, 1991, ADV SOVIET MATH, V6, P267