Diamond composites of high thermal conductivity and low dielectric loss tangent

被引:9
作者
Osipov, A. S. [1 ]
Klimczyk, P. [2 ]
Rutkowski, P. [3 ]
Melniychuk, Y. A. [1 ]
Romanko, L. O. [1 ]
Podsiadlo, M. [2 ]
Petrusha, I. A. [1 ]
Jaworska, L. [3 ]
机构
[1] Natl Acad Sci Ukraine, Inst Superhard Mat, 2 Avtozavodskya St, UA-04074 Kiev, Ukraine
[2] Krakow Inst Technol, Lukasiewicz Res Network, Zakopianska 73, PL-30418 Krakow, Poland
[3] AGH Univ Sci & Technol, 30 Al Mickiewicza, PL-30059 Krakow, Poland
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2021年 / 269卷
关键词
Diamond composite; High pressure; Thermal conductivity; Dielectric constant; Dielectric loss tangent; CVD DIAMOND; PRESSURE;
D O I
10.1016/j.mseb.2021.115171
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Diamond-CaMg(CO3)(2) and diamond-CaCO3 compacts were produced. Maximum values of high thermal conductivity of 540 W/m K, electrical resistivity of 2.10(11) ohm cm, dielectric constant of 47, and dielectric loss tangent of 5.8.10(-3) at 106 Hz were achieved. The composites based on diamonds were sintered at a high pressure of 8.0 GPa and temperature of 2100 degrees C and were characterised by high ratios of direct bonding between the diamond grains. Diamond grain size varied from 12 to 45 mu m. The CaCO3 content of the diamond-CaCO3 composites and the CaMg(CO3)(2) content of the diamond-CaMg(CO3) (2) composites were 8.5 vol% and 8.8 vol%, respectively. The materials developed are recommended for use as heat sinks in a wide range of electronic devices.
引用
收藏
页数:5
相关论文
共 18 条
[1]   Mechanical properties of a diamond-copper composite with high thermal conductivity [J].
Abyzov, Andrey M. ;
Shakhov, Fedor M. ;
Averkin, Andrey I. ;
Nikolaev, Vladimir I. .
MATERIALS & DESIGN, 2015, 87 :527-539
[2]   Diamond formation and wettability in a Mg-Cu-C system under high pressure and high temperature [J].
Andreyev, AV ;
Kanda, H .
DIAMOND AND RELATED MATERIALS, 1997, 6 (01) :28-32
[3]   Thermal conductivity of diamond composites sintered under high pressures [J].
Ekimov, E. A. ;
Suetin, N. V. ;
Popovich, A. F. ;
Ralchenko, V. G. .
DIAMOND AND RELATED MATERIALS, 2008, 17 (4-5) :838-843
[4]   High thermal conductive AlN substrate for heat dissipation in high-power LEDs [J].
Huang, Dong ;
Liu, Zheng ;
Harris, Jonathan ;
Diao, Xungang ;
Liu, Guanghua .
CERAMICS INTERNATIONAL, 2019, 45 (01) :1412-1415
[5]   Microstructure and thermal properties of copper-diamond composites with tungsten carbide coating on diamond particles [J].
Kang, Qiping ;
He, Xinbo ;
Ren, Shubin ;
Liu, Tingting ;
Liu, Qian ;
Wu, Mao ;
Qu, Xuanhui .
MATERIALS CHARACTERIZATION, 2015, 105 :18-23
[6]   Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration [J].
Li, Jianwei ;
Zhang, Hailong ;
Zhang, Yang ;
Che, Zifan ;
Wang, Xitao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 647 :941-946
[7]   High electrical resistivity of CVD-diamond [J].
Manca, JV ;
Nesladek, M ;
Neelen, M ;
Quaeyhaegens, C ;
De Schepper, L ;
De Ceuninck, W .
MICROELECTRONICS RELIABILITY, 1999, 39 (02) :269-273
[8]   Thermal conductivity of CVD diamond fibres and diamond fibre-reinforced epoxy composites [J].
May, PW ;
Portman, R ;
Rosser, KN .
DIAMOND AND RELATED MATERIALS, 2005, 14 (3-7) :598-603
[9]   Research on two-phase heat removal devices for power electronics [J].
Nikolaenko, Yu E. ;
Alekseik, Ye S. ;
Kozak, D., V ;
Nikolaienko, T. Yu .
THERMAL SCIENCE AND ENGINEERING PROGRESS, 2018, 8 :418-425
[10]   Diamond-CaCO3 and diamond-Li2CO3 materials sintered using the HPHT method [J].
Osipov, A. S. ;
Klimczyk, P. ;
Cygan, S. ;
Melniychuk, Yu. A. ;
Petrusha, I. A. ;
Jaworska, L. ;
Bykov, A. I. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (07) :2553-2558