Diamond composites of high thermal conductivity and low dielectric loss tangent

被引:8
作者
Osipov, A. S. [1 ]
Klimczyk, P. [2 ]
Rutkowski, P. [3 ]
Melniychuk, Y. A. [1 ]
Romanko, L. O. [1 ]
Podsiadlo, M. [2 ]
Petrusha, I. A. [1 ]
Jaworska, L. [3 ]
机构
[1] Natl Acad Sci Ukraine, Inst Superhard Mat, 2 Avtozavodskya St, UA-04074 Kiev, Ukraine
[2] Krakow Inst Technol, Lukasiewicz Res Network, Zakopianska 73, PL-30418 Krakow, Poland
[3] AGH Univ Sci & Technol, 30 Al Mickiewicza, PL-30059 Krakow, Poland
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2021年 / 269卷
关键词
Diamond composite; High pressure; Thermal conductivity; Dielectric constant; Dielectric loss tangent; CVD DIAMOND; PRESSURE;
D O I
10.1016/j.mseb.2021.115171
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Diamond-CaMg(CO3)(2) and diamond-CaCO3 compacts were produced. Maximum values of high thermal conductivity of 540 W/m K, electrical resistivity of 2.10(11) ohm cm, dielectric constant of 47, and dielectric loss tangent of 5.8.10(-3) at 106 Hz were achieved. The composites based on diamonds were sintered at a high pressure of 8.0 GPa and temperature of 2100 degrees C and were characterised by high ratios of direct bonding between the diamond grains. Diamond grain size varied from 12 to 45 mu m. The CaCO3 content of the diamond-CaCO3 composites and the CaMg(CO3)(2) content of the diamond-CaMg(CO3) (2) composites were 8.5 vol% and 8.8 vol%, respectively. The materials developed are recommended for use as heat sinks in a wide range of electronic devices.
引用
收藏
页数:5
相关论文
共 18 条
  • [1] Mechanical properties of a diamond-copper composite with high thermal conductivity
    Abyzov, Andrey M.
    Shakhov, Fedor M.
    Averkin, Andrey I.
    Nikolaev, Vladimir I.
    [J]. MATERIALS & DESIGN, 2015, 87 : 527 - 539
  • [2] Diamond formation and wettability in a Mg-Cu-C system under high pressure and high temperature
    Andreyev, AV
    Kanda, H
    [J]. DIAMOND AND RELATED MATERIALS, 1997, 6 (01) : 28 - 32
  • [3] Thermal conductivity of diamond composites sintered under high pressures
    Ekimov, E. A.
    Suetin, N. V.
    Popovich, A. F.
    Ralchenko, V. G.
    [J]. DIAMOND AND RELATED MATERIALS, 2008, 17 (4-5) : 838 - 843
  • [4] High thermal conductive AlN substrate for heat dissipation in high-power LEDs
    Huang, Dong
    Liu, Zheng
    Harris, Jonathan
    Diao, Xungang
    Liu, Guanghua
    [J]. CERAMICS INTERNATIONAL, 2019, 45 (01) : 1412 - 1415
  • [5] Microstructure and thermal properties of copper-diamond composites with tungsten carbide coating on diamond particles
    Kang, Qiping
    He, Xinbo
    Ren, Shubin
    Liu, Tingting
    Liu, Qian
    Wu, Mao
    Qu, Xuanhui
    [J]. MATERIALS CHARACTERIZATION, 2015, 105 : 18 - 23
  • [6] Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration
    Li, Jianwei
    Zhang, Hailong
    Zhang, Yang
    Che, Zifan
    Wang, Xitao
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 647 : 941 - 946
  • [7] High electrical resistivity of CVD-diamond
    Manca, JV
    Nesladek, M
    Neelen, M
    Quaeyhaegens, C
    De Schepper, L
    De Ceuninck, W
    [J]. MICROELECTRONICS RELIABILITY, 1999, 39 (02) : 269 - 273
  • [8] Thermal conductivity of CVD diamond fibres and diamond fibre-reinforced epoxy composites
    May, PW
    Portman, R
    Rosser, KN
    [J]. DIAMOND AND RELATED MATERIALS, 2005, 14 (3-7) : 598 - 603
  • [9] Research on two-phase heat removal devices for power electronics
    Nikolaenko, Yu E.
    Alekseik, Ye S.
    Kozak, D., V
    Nikolaienko, T. Yu
    [J]. THERMAL SCIENCE AND ENGINEERING PROGRESS, 2018, 8 : 418 - 425
  • [10] Diamond-CaCO3 and diamond-Li2CO3 materials sintered using the HPHT method
    Osipov, A. S.
    Klimczyk, P.
    Cygan, S.
    Melniychuk, Yu. A.
    Petrusha, I. A.
    Jaworska, L.
    Bykov, A. I.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (07) : 2553 - 2558