MSASGCN : Multi-Head Self-Attention Spatiotemporal Graph Convolutional Network for Traffic Flow Forecasting

被引:2
|
作者
Cao, Yang [1 ]
Liu, Detian [1 ]
Yin, Qizheng [1 ]
Xue, Fei [1 ]
Tang, Hengliang [1 ]
机构
[1] Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
关键词
NEURAL-NETWORK; PREDICTION;
D O I
10.1155/2022/2811961
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic flow forecasting is an essential task of an intelligent transportation system (ITS), closely related to intelligent transportation management and resource scheduling. Dynamic spatial-temporal dependencies in traffic data make traffic flow forecasting to be a challenging task. Most existing research cannot model dynamic spatial and temporal correlations to achieve well-forecasting performance. The multi-head self-attention mechanism is a valuable method to capture dynamic spatial-temporal correlations, and combining it with graph convolutional networks is a promising solution. Therefore, we propose a multi-head self-attention spatiotemporal graph convolutional network (MSASGCN) model. It can effectively capture local correlations and potential global correlations of spatial structures, can handle dynamic evolution of the road network, and, in the time dimension, can effectively capture dynamic temporal correlations. Experiments on two real datasets verify the stability of our proposed model, obtaining a better prediction performance than the baseline algorithms. The correlation metrics get significantly reduced compared with traditional time series prediction methods and deep learning methods without using graph neural networks, according to MAE and RMSE results. Compared with advanced traffic flow forecasting methods, our model also has a performance improvement and a more stable prediction performance. We also discuss some problems and challenges in traffic forecasting.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Spatiotemporal Graph Convolutional Network for Multi-Scale Traffic Forecasting
    Wang, Yi
    Jing, Changfeng
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (02)
  • [22] Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification
    Luwei Xiao
    Xiaohui Hu
    Yinong Chen
    Yun Xue
    Bingliang Chen
    Donghong Gu
    Bixia Tang
    Multimedia Tools and Applications, 2022, 81 : 19051 - 19070
  • [23] Multi-Head Self-Attention Gated-Dilated Convolutional Neural Network for Word Sense Disambiguation
    Zhang, Chun-Xiang
    Zhang, Yu-Long
    Gao, Xue-Yao
    IEEE ACCESS, 2023, 11 : 14202 - 14210
  • [24] Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification
    Xiao, Luwei
    Hu, Xiaohui
    Chen, Yinong
    Xue, Yun
    Chen, Bingliang
    Gu, Donghong
    Tang, Bixia
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (14) : 19051 - 19070
  • [25] MHSAN: Multi-Head Self-Attention Network for Visual Semantic Embedding
    Park, Geondo
    Han, Chihye
    Kim, Daeshik
    Yoon, Wonjun
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 1507 - 1515
  • [26] Spatiotemporal synchronous dynamic graph attention network for traffic flow forecasting
    Xia D.
    Lin Z.
    Chen Y.
    Hu Y.
    Li Y.
    Li H.
    Neural Computing and Applications, 2024, 36 (22) : 13745 - 13759
  • [27] Research on Enhanced Multi-head Self-Attention Social Recommendation Algorithm Based on Graph Neural Network
    Teng, Yue
    Yang, Kai
    IAENG International Journal of Computer Science, 2024, 51 (07) : 754 - 764
  • [28] ViolenceNet: Dense Multi-Head Self-Attention with Bidirectional Convolutional LSTM for Detecting Violence
    Rendon-Segador, Fernando J.
    Alvarez-Garcia, Juan A.
    Enriquez, Fernando
    Deniz, Oscar
    ELECTRONICS, 2021, 10 (13)
  • [29] A novel two-stream multi-head self-attention convolutional neural network for bearing fault diagnosis
    Ren, Hang
    Liu, Shaogang
    Wei, Fengmei
    Qiu, Bo
    Zhao, Dan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (11) : 5393 - 5405
  • [30] SASTDGCN: Self-Attention Based Spatial-Temporal Double Graph Convolutional Networks for Traffic Flow Forecasting
    Wan, Jingjia
    Wu, Yu
    Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023, 2023, : 1544 - 1549