On the diameter and girth of a zero-divisor graph

被引:139
作者
Anderson, David F. [1 ]
Mulay, S. B. [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
D O I
10.1016/j.jpaa.2006.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a commutative ring R with zero-divisors Z(R), the zero-divisor graph of R is Gamma(R) = Z(R) - {0}, with distinct vertices x and y adjacent if and only if xy = 0. In this paper, we characterize when either diam(Gamma(R)) <= 2 or gr(Gamma(R)) >= 4. We then use these results to investigate the diameter and girth for the zero-divisor graphs of polynomial rings, power series rings, and idealizations. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:543 / 550
页数:8
相关论文
共 13 条
[1]   BECK COLORING OF A COMMUTATIVE RING [J].
ANDERSON, DD ;
NASEER, M .
JOURNAL OF ALGEBRA, 1993, 159 (02) :500-514
[2]   Zero-divisor graphs, von Neumann regular rings, and Boolean algebras [J].
Anderson, DF ;
Levy, R ;
Shapiro, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 180 (03) :221-241
[3]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[4]   Zero-divisor graphs of idealizations [J].
Axtell, M ;
Stickles, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 204 (02) :235-243
[5]   Zero-divisor graphs of polynomials and power series over commutative rings [J].
Axtell, M ;
Coykendall, J ;
Stickles, J .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (06) :2043-2050
[6]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[7]  
Bollaboas B., 1979, GRAPH THEORY INTRO C
[8]  
DeMeyer F., 2002, INT J COMMUTATIVE RI, V1, P93
[9]  
Huckaba JA., 1988, COMMUTATIVE RINGS ZE
[10]  
Kaplansky I., 1974, COMMUTATIVE RINGS