FRACTIONAL MAXIMAL OPERATOR AND FRACTIONAL INTEGRAL OPERATOR ON ORLICZ-LORENTZ SPACES

被引:0
作者
Li, Hongliang [1 ]
机构
[1] Zhejiang Int Studies Univ, Dept Math, Hangzhou, Zhejiang, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2016年 / 19卷 / 01期
基金
中国国家自然科学基金;
关键词
Orlicz-Lorentz spaces; fractional maximal operator; fractional integral operator; modular inequalities; boundedness of operator; HARDY-TYPE; INEQUALITIES;
D O I
10.7153/mia-19-02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the characterization of the weighted modular inequalities for the fractional maximal operator M-alpha (0 <= alpha< n) on the Orlicz-Lorentz spaces by atomic decomposition which induces a sufficient condition of the boundedness for this operator on the Orlicz-Lorentz spaces. And we also find the characterization of the weighted modular inequalities for the fractional integral operator I-alpha (0 <= alpha< n) on the Orlicz-Lorentz spaces in certain case which leads to a sufficient condition of the boundedness for I-alpha (0 <= alpha< n).
引用
收藏
页码:15 / 31
页数:17
相关论文
共 30 条
  • [1] [Anonymous], 1961, Convex functions and Orlicz spaces
  • [2] Bennett C., 1980, Diss. Math, V175, P1
  • [3] Bennett C., 1988, PURE APPL MATH, V129
  • [4] WEIGHTED L-PHI INTEGRAL-INEQUALITIES FOR OPERATORS OF HARDY TYPE
    BLOOM, S
    KERMAN, R
    [J]. STUDIA MATHEMATICA, 1994, 110 (01) : 35 - 52
  • [5] Carro MJ, 2007, MEM AM MATH SOC, V187, pIX
  • [6] WEIGHTED LORENTZ SPACES AND THE HARDY OPERATOR
    CARRO, MJ
    SORIA, J
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 112 (02) : 480 - 494
  • [7] Cianchi A, 1997, Q J MATH, V48, P439
  • [8] Heinig H. P., 2000, J INEQUAL PURE APPL, V1
  • [9] Abstract duality Sawyer formula and its applications
    Kaminska, Anna
    Mastylo, Mieczyslaw
    [J]. MONATSHEFTE FUR MATHEMATIK, 2007, 151 (03): : 223 - 245
  • [10] INTEGRAL-INEQUALITIES WITH WEIGHTS FOR THE HARDY MAXIMAL-FUNCTION
    KERMAN, RA
    TORCHINSKY, A
    [J]. STUDIA MATHEMATICA, 1982, 71 (03) : 277 - 284