Characterization of early pathogenesis in the SOD1G93A mouse model of ALS: part I, background and methods

被引:80
作者
Vinsant, Sharon [1 ,2 ]
Mansfield, Carol [1 ,2 ]
Jimenez-Moreno, Ramon [1 ,2 ]
Moore, Victoria Del Gaizo [3 ]
Yoshikawa, Masaaki [1 ,2 ]
Hampton, Thomas G. [4 ]
Prevette, David [1 ,2 ]
Caress, James [5 ,6 ]
Oppenheim, Ronald W. [1 ,2 ]
Milligan, Carol [1 ,2 ]
机构
[1] Dept Neurobiol & Anat, Neurosci Program, Winston Salem, NC USA
[2] ALS Ctr, Winston Salem, NC USA
[3] Elon Univ, Dept Chem, Elon, NC USA
[4] Mouse Specif, Boston, MA USA
[5] Wake Forest Univ, Bowman Gray Sch Med, Dept Neurol, Winston Salem, NC 27157 USA
[6] Wake Forest Univ, Bowman Gray Sch Med, ALS Ctr, Winston Salem, NC 27157 USA
来源
BRAIN AND BEHAVIOR | 2013年 / 3卷 / 04期
基金
美国国家卫生研究院;
关键词
Axons; cytoplasmic vacuoles; glia; mega-mitochondria; mitochondria; motoneurons; motor function; NM[!text type='Js']Js[!/text; AMYOTROPHIC-LATERAL-SCLEROSIS; CU; ZN SUPEROXIDE-DISMUTASE; MOTOR-NEURON DEGENERATION; LINKED SOD1 MUTANTS; AXONAL-TRANSPORT; SPINAL-CORD; TRANSGENIC MICE; NERVE-TERMINALS; GOLGI-APPARATUS; CELL-DEATH;
D O I
10.1002/brb3.143
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Charcot first described amyotrophic lateral sclerosis (ALS) in 1869; however, its causes remain largely unknown and effective, long-term treatment strategies are not available. The first mouse model of ALS was developed after the identification of mutations in the superoxide dismutase 1 (SOD1) gene in 1993, and accordingly most of our knowledge of the etiology and pathogenesis of the disease comes from studies carried out using this animal model. Although numerous preclinical trials have been conducted in the mutant SOD1 mouse models, the results have been disappointing because they did not positively translate to clinical trials. One explanation may be that current understanding of when and where pathogenesis begins is insufficient to accurately guide preclinical trials. Further characterization of these early events may provide insight into disease onset, help in the discovery of presymptomatic diagnostic disease markers, and identify novel therapeutic targets. Here, we describe the rationale, approach, and methods for our extensive analysis of early changes that included an ultrastructural examination of central and peripheral components of the neuromuscular system in the SOD1(G93A) mouse and correlated these alterations with early muscle denervation, motor dysfunction, and motoneuron death. We also provide a discussion of published work to review what is known regarding early pathology in the SOD1 mouse model of ALS. The significance of this work is that we have examined early pathology simultaneously in both the spinal cord and peripheral neuromuscular system, and the results are presented in the companion paper (Part II, Results and Discussion). Our results provide evidence as to why a thorough characterization of animal models throughout the life span is critical for a strong foundation to design preclinical trials that may produce meaningful results.
引用
收藏
页码:335 / 350
页数:16
相关论文
共 113 条