The Effects of Organic Vapor on Alkanethiol Deposition via Dip-Pen Nanolithography

被引:7
|
作者
Salaita, Khalid [1 ,2 ]
Amarnath, Anand [3 ]
Higgins, Thomas B. [3 ]
Mirkin, Chad A. [1 ,2 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
[3] Harold Washington Coll, Dept Phys Sci, Chicago, IL USA
基金
美国国家科学基金会;
关键词
DPN; AFM; nanoscale transport; self-assembled monolayer; alkanethiol; MOLECULAR-TRANSPORT; MENISCUS FORMATION; FORCE; NANOSTRUCTURES; TIP; EVOLUTION; DIFFUSION; PROTEINS; SILICON;
D O I
10.1002/sca.20179
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Dip-pen nanolithography (DPN) is a scanning probe-based technique that allows for direct delivery of molecules to a range of substrates with sub-50 nm resolution. This study describes the effect of organic solvent vapor on the deposition rate and feature size of nanostructures deposited via DPN. The transport rate of model molecular inks, 1-octadecanethiol, and 16-mercaptohexadecanoic acid were examined under atmospheres of ethanol, methanol, hexane, and dichloromethane. In all cases, presence of an organic vapor increased deposition rate and feature size, in some cases by an order of magnitude. This underscores how the environment can be used to regulate molecular transport rates in a DPN experiment. SCANNING 32: 9-14, 2010. (C) 2010 Wiley Periodicals, Inc.
引用
收藏
页码:9 / 14
页数:6
相关论文
共 50 条
  • [31] Protein immobilization without purification via dip-pen nanolithography
    Kim, Kyung Hee
    Kim, Jung Dong
    Kim, Young Jun
    Kong, Seong Ho
    Jung, Seung Yong
    Jung, Hyungil
    SMALL, 2008, 4 (08) : 1089 - 1094
  • [32] Arrays of magnetic nanoparticles patterned via "dip-pen" nanolithography
    Liu, XG
    Fu, L
    Hong, SH
    Dravid, VP
    Mirkin, CA
    ADVANCED MATERIALS, 2002, 14 (03) : 231 - +
  • [33] Simulation of deposition of ink molecules on rough substrates in dip-pen nanolithography
    Wu, Cheng-Da
    Fang, Te-Hua
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2011, 19 (06)
  • [34] Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography
    Nelson, BA
    King, WP
    Laracuente, AR
    Sheehan, PE
    Whitman, LJ
    APPLIED PHYSICS LETTERS, 2006, 88 (03) : 1 - 3
  • [35] DIP-PEN nanolithography using colloidal inks
    John, Neena Susan
    Gundiah, Gautam
    Thomas, P. John
    Kulkarni, G. U.
    Heun, S.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, VOL 4, NOS 5 AND 6, 2005, 4 (5-6): : 921 - 934
  • [36] Protein nanoarrays generated by dip-pen nanolithography
    Lee, KB
    Park, SJ
    Mirkin, CA
    Smith, JC
    Mrksich, M
    SCIENCE, 2002, 295 (5560) : 1702 - 1705
  • [37] Dip-pen nanolithography: A simple diffusion model
    Antoncik, E
    SURFACE SCIENCE, 2005, 599 (1-3) : L369 - L371
  • [38] Controlling the Number of Proteins with Dip-Pen Nanolithography
    Bellido, Elena
    de Miguel, Rocio
    Ruiz-Molina, Daniel
    Lostao, Anabel
    Maspoch, Daniel
    ADVANCED MATERIALS, 2010, 22 (03) : 352 - +
  • [39] Capillary bridge rupture in dip-pen nanolithography
    Eichelsdoerfer, Daniel J.
    Brown, Keith A.
    Mirkin, Chad A.
    SOFT MATTER, 2014, 10 (30) : 5603 - 5608
  • [40] Generation of Metal Photomasks by Dip-Pen Nanolithography
    Jang, Jae-Won
    Sanedrin, Raymond G.
    Senesi, Andrew J.
    Zheng, Zijian
    Chen, Xiaodong
    Hwang, Seongpil
    Huang, Ling
    Mirkin, Chad A.
    SMALL, 2009, 5 (16) : 1850 - 1853