Machine learning assisted synthesis of lithium-ion batteries cathode materials

被引:59
作者
Liow, Chi Hao [1 ]
Kang, Hyeonmuk [1 ]
Kim, Seunggu [2 ]
Na, Moony [2 ]
Lee, Yongju [1 ]
Baucour, Arthur [1 ]
Bang, Kihoon [1 ]
Shim, Yoonsu [1 ]
Choe, Jacob [1 ]
Hwang, Gyuseong [1 ]
Cho, Seongwoo [1 ]
Park, Gun [1 ]
Yeom, Jiwon [1 ]
Agar, Joshua C. [4 ]
Yuk, Jong Min [1 ]
Shin, Jonghwa [1 ]
Lee, Hyuck Mo [1 ]
Byon, Hye Ryung [2 ]
Cho, EunAe [1 ]
Hong, Seungbum [1 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, Daejeon 3414, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Dept Chem, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, KAIST Inst NanoCentury, Daejeon 34141, South Korea
[4] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
Lithium-ion batteries; NCM cathode; Inverse design; Machine learning; Design-to-device pipeline; PERFORMANCE;
D O I
10.1016/j.nanoen.2022.107214
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Optimizing synthesis parameters is crucial in fabricating an ideal cathode material; however, the design space is too vast to be fully explored using an Edisonian approach. Here, by clustering eleven domain-expert-deriveddescriptors from literature, we use an inverse design surrogate model to build up the experimental parameters-property relationship. Without struggling with the trial-and-error method, the model enables design variables prediction that serves as an effective strategy for cathode retrosynthesis. More importantly, not only did we overcome the data scarcity problem, but the machine learning model has guided us to achieve cathode with high discharge capacity and Coulombic efficiency of 209.5 mAh/g and 86%, respectively. This work demonstrates an inverse design-to-device pipeline with unprecedented potential to accelerate the discovery of highenergy-density cathodes.
引用
收藏
页数:7
相关论文
共 39 条
[1]   Achieving high capacity and rate capability in layered lithium transition metal oxide cathodes for lithium-ion batteries [J].
Ahn, Juhyeon ;
Susanto, Dieky ;
Noh, Jae-Kyo ;
Ali, Ghulam ;
Cho, Byung Won ;
Chung, Kyung Yoon ;
Kim, Jong Hak ;
Oh, Si Hyoung .
JOURNAL OF POWER SOURCES, 2017, 360 :575-584
[2]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[3]   Multiple imputation by chained equations: what is it and how does it work? [J].
Azur, Melissa J. ;
Stuart, Elizabeth A. ;
Frangakis, Constantine ;
Leaf, Philip J. .
INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH, 2011, 20 (01) :40-49
[4]   Nearest neighbor imputation algorithms: a critical evaluation [J].
Beretta, Lorenzo ;
Santaniello, Alessandro .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2016, 16
[5]   Topology-Based Machine Learning Strategy for Cluster Structure Prediction [J].
Chen, Xin ;
Chen, Dong ;
Weng, Mouyi ;
Jiang, Yi ;
Wei, Guo-Wei ;
Pan, Feng .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (11) :4392-4401
[6]   AFLOW: An automatic framework for high-throughput materials discovery [J].
Curtarolo, Stefano ;
Setyawan, Wahyu ;
Hart, Gus L. W. ;
Jahnatek, Michal ;
Chepulskii, Roman V. ;
Taylor, Richard H. ;
Wanga, Shidong ;
Xue, Junkai ;
Yang, Kesong ;
Levy, Ohad ;
Mehl, Michael J. ;
Stokes, Harold T. ;
Demchenko, Denis O. ;
Morgan, Dane .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 :218-226
[7]   Multiple Imputation for General Missing Data Patterns in the Presence of High-dimensional Data [J].
Deng, Yi ;
Chang, Changgee ;
Ido, Moges Seyoum ;
Long, Qi .
SCIENTIFIC REPORTS, 2016, 6
[8]   NOMAD: The FAIR concept for big data-driven materials science [J].
Draxl, Claudia ;
Scheffler, Matthias .
MRS BULLETIN, 2018, 43 (09) :676-682
[9]   Influence of temperature and upper cut-off voltage on the formation of lithium-ion cells [J].
German, Florian ;
Hintennach, Andreas ;
LaCroix, Annette ;
Thiemig, Denny ;
Oswald, Steffen ;
Scheiba, Frieder ;
Hoffmann, Michael J. ;
Ehrenberg, Helmut .
JOURNAL OF POWER SOURCES, 2014, 264 :100-107
[10]   The use of a single-crystal nickel-rich layered NCM cathode for excellent cycle performance of lithium-ion batteries [J].
Guo, Qiankun ;
Huang, Jili ;
Liang, Zhao ;
Potapenko, Hanna ;
Zhou, Miaomiao ;
Tang, Xiaodong ;
Zhong, Shengwen .
NEW JOURNAL OF CHEMISTRY, 2021, 45 (07) :3652-3659