Tuning the Double Layer of Graphene Oxide through Phosphorus Doping for Enhanced Supercapacitance

被引:28
作者
Song, Weixin [1 ,3 ]
Lischner, Johannes [1 ,2 ,3 ]
Rocha, Victoria G. [1 ,4 ]
Qin, Heng [1 ,3 ]
Qi, Jiahui [1 ,3 ]
Hadden, Joseph H. L. [1 ,3 ]
Mattevi, Cecilia [1 ,3 ]
Xie, Fang [1 ,3 ]
Riley, D. Jason [1 ,3 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[2] Imperial Coll London, Thomas Young Ctr, London SW7 2AZ, England
[3] London Ctr Nanotechnol, London SW7 2AZ, England
[4] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, S Glam, Wales
来源
ACS ENERGY LETTERS | 2017年 / 2卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
OXYGEN REDUCTION REACTION; NITROGEN-DOPED GRAPHENE; RAMAN-SPECTROSCOPY; ION BATTERIES; PERFORMANCE; EVOLUTION; CARBONS;
D O I
10.1021/acsenergylett.7b00275
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical double layer plays a fundamental role in energy storage applications. Control of the distribution of ions in the double layer at the atomistic scale offers routes to enhanced material functionality and device performance. Here we demonstrate how the addition of an element from the third row of the periodic table, phosphorus, to graphene oxide increases the measured capacitance and present density functional theory calculations that relate the enhanced charge storage to structural changes of the electrochemical double layer. Our results point to how rational design of materials at the atomistic scale can lead to improvements in their performance for energy storage.
引用
收藏
页码:1144 / 1149
页数:6
相关论文
共 26 条
  • [1] Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/NCHEM.686, 10.1038/nchem.686]
  • [2] Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers
    Berciaud, Stephane
    Ryu, Sunmin
    Brus, Louis E.
    Heinz, Tony F.
    [J]. NANO LETTERS, 2009, 9 (01) : 346 - 352
  • [3] Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies
    Cancado, L. G.
    Jorio, A.
    Martins Ferreira, E. H.
    Stavale, F.
    Achete, C. A.
    Capaz, R. B.
    Moutinho, M. V. O.
    Lombardo, A.
    Kulmala, T. S.
    Ferrari, A. C.
    [J]. NANO LETTERS, 2011, 11 (08) : 3190 - 3196
  • [4] Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications
    Chen, Da
    Feng, Hongbin
    Li, Jinghong
    [J]. CHEMICAL REVIEWS, 2012, 112 (11) : 6027 - 6053
  • [5] High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes
    Chen, Yao
    Zhang, Xiong
    Zhang, Dacheng
    Yu, Peng
    Ma, Yanwei
    [J]. CARBON, 2011, 49 (02) : 573 - 580
  • [6] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215
  • [7] Graphene: Status and Prospects
    Geim, A. K.
    [J]. SCIENCE, 2009, 324 (5934) : 1530 - 1534
  • [8] Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes
    Jeong, Hyung Mo
    Lee, Jung Woo
    Shin, Weon Ho
    Choi, Yoon Jeong
    Shin, Hyun Joon
    Kang, Jeung Ku
    Choi, Jang Wook
    [J]. NANO LETTERS, 2011, 11 (06) : 2472 - 2477
  • [9] Synthesis and characterization of methacrylate phospho-silicate hybrid for thin film applications
    Kannan, Aravindaraj G.
    Choudhury, Namita Roy
    Dutta, Naba K.
    [J]. POLYMER, 2007, 48 (24) : 7078 - 7086
  • [10] Joint density functional theory of the electrode-electrolyte interface: Application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge
    Letchworth-Weaver, Kendra
    Arias, T. A.
    [J]. PHYSICAL REVIEW B, 2012, 86 (07)