A general homological Kleiman-Bertini theorem

被引:10
作者
Sierra, Susan J. [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
generic transversality; homological transversality; Kleiman's theorem; group action;
D O I
10.2140/ant.2009.3.597
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a smooth algebraic group acting on a variety X. Let F and E be coherent sheaves on X. We show that if all the higher Tor sheaves of F against G-orbits vanish, then for generic g is an element of G, the sheaf Tor(j)(X)(g F, E) vanishes for all j >= 1. This generalizes a result of Miller and Speyer for transitive group actions and a result of Speiser, itself generalizing the classical Kleiman-Bertini theorem, on generic transversality, under a general group action, of smooth subvarieties over an algebraically closed field of characteristic 0.
引用
收藏
页码:597 / 609
页数:13
相关论文
共 11 条
  • [1] [Anonymous], TEXTS
  • [2] [Anonymous], 1991, GRADUATE TEXTS MATH
  • [3] TWISTED HOMOGENEOUS COORDINATE RINGS
    ARTIN, M
    VANDENBERGH, M
    [J]. JOURNAL OF ALGEBRA, 1990, 133 (02) : 249 - 271
  • [4] FULTON W, 1998, LECT NOTES MATH, V1689
  • [5] Grothendieck A., 1963, Inst. Hautes Etudes Sci. Publ. Math., V17, P91
  • [6] Hartshorne R., 1977, ALGEBRAIC GEOMETRY, V52
  • [7] KLEIMAN SL, 1974, COMPOS MATH, V28, P287
  • [8] Matsumura H., 1989, CAMBRIDGE STUDIES AD, V8
  • [9] A Kleiman-Bertini theorem for sheaf tensor products
    Miller, Ezra
    Speyer, David E.
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2008, 17 (02) : 335 - 340
  • [10] SPEISER R, 1988, LECT NOTES MATH, V1311, P235